scholarly journals Calcareous nannofossil assemblage changes from early to middle Eocene in the Levant margin of the Tethys, central Israel

2011 ◽  
Vol 30 (2) ◽  
pp. 129-139 ◽  
Author(s):  
Menahem Weinbaum-Hefetz ◽  
Chaim Benjamini

Abstract. Patterns of change in calcareous nannofossil assemblages during nannozones NP11 to NP16 on the southern Levant margin of the Tethys were observed from sections of early and middle Eocene age sediments of the Avedat Plateau, central Israel. A cooling process following the Early Eocene Climate Optimum (EECO) is supported by several events of biotic change over a 4 Ma interval. The rate of pelagic sedimentation varied from 7.5 at the EECO to 23.6 m Ma–1 at the cooling transition phase. Reduced numbers of discoasters mark the end of the oligotrophic regime within the NP13 nannozone, followed by an increase in nannofossil richness especially marked by Blackites and Chiasmolithus spp. In the middle part of the cooling process a prominent peak of reworked Paleocene taxa, up to 7% of total taxa, suggests that enhanced current activity caused re-sedimentation on the Levant margin slopes. When stability resumed in the upper part of the NP15–16 interval, Coccolithus-type placoliths became rare and Reticulofenestra-type forms became dominant. Calcareous nannoplankton response to this gradual cooling became irreversible in the late Palaeogene, but the change was, however, diachronous across the Tethys.

2010 ◽  
Vol 148 (3) ◽  
pp. 442-460 ◽  
Author(s):  
A. PAYROS ◽  
J. DINARÈS-TURELL ◽  
G. BERNAOLA ◽  
X. ORUE-ETXEBARRIA ◽  
E. APELLANIZ ◽  
...  

AbstractAn integrated bio-, magneto- and cyclostratigraphic study of the Ypresian/Lutetian (Early/Middle Eocene) transition along the Otsakar section resulted in the identification of the C22n/C21r chron boundary and of the calcareous nannofossil CP12a/b zonal boundary; the latter is the main correlation criterion of the Lutetian Global Stratotype Section and Point (GSSP) recently defined at Gorrondatxe (Basque Country). By counting precession-related mudstone–marl couplets of 21 ka, the time lapse between both events was calculated to be 819 ka. This suggests that the age of the CP12a/b boundary, and hence that of the Early/Middle Eocene boundary, is 47.76 Ma, 250 ka younger than previously thought. This age agrees with, and is supported by, estimates from Gorrondatxe based on the time lapse between the Lutetian GSSP and the C21r/C21n boundary. The duration of Chron C21r is estimated at 1.326 Ma. Given that the base of the Eocene is dated at 55.8 Ma, the duration of the Early Eocene is 8 Ma, 0.8 Ma longer than in current time scales. The Otsakar results further show that the bases of planktonic foraminiferal zones E8 and P10 are younger than the CP12a/b boundary. The first occurrence ofTurborotalia frontosa, being approximately 550 ka older that the CP12a/b boundary, is the planktonic foraminiferal event that lies closest to the Early/Middle Eocene boundary. The larger foraminiferal SBZ12/13 boundary is located close to the CP12a/b boundary and correlates with Chron C21r, not with the C22n/C21r boundary.


2021 ◽  
Author(s):  
◽  
Claire Louise Shepherd

<p>Earth’s climate underwent a long-term warming trend from the late Paleocene to early Eocene (~58–51 Ma), with global temperature reaching a sustained maximum during the Early Eocene Climatic Optimum (EECO; 53–50 Ma). Geochemical proxies indicate tropical or warm subtropical sea-surface temperature (SST) conditions in middle and high latitudes in the early Eocene, implying a very low latitudinal temperature gradient. This study investigates whether calcareous nannofossil assemblages in the southwest (SW) Pacific provide evidence of these conditions at middle latitudes in the early to middle Eocene, particularly during the EECO. Specifically, this study documents the biogeographic changes of warm- and cold-water nannofossil species along a paleolatitudinal transect through the EECO to track changes in water masses/ocean circulation at that time.  Early to middle Eocene calcareous nannofossil assemblages were examined from four sites along a latitudinal transect in the SW Pacific, extending from Lord Howe Rise in the north to Campbell Plateau in the south and spanning a paleolatitude of ~46–54°S. All of the sections studied in this project span nannofossil zones NP10–16 (Martini, 1971). The data indicate up to three regional unconformities through the sections: at mid-Waipara, Deep Sea Drilling Project (DSDP) Site 207 and 277, part or all of Zone NP10 (lower Waipawan) is missing; at Sites 207 and 277 a possible hiatus occurs within NP12 (upper Waipawan–lower Mangaorapan); and at all sites part or all of Zone NP15 (lower Bortonian) is missing. Results of this study indicate that nannofossil assemblages in the SW Pacific are more similar to floras at temperate to polar sites rather than those at tropical/subtropical sites. However, variations in the relative abundance of key species in the SW Pacific are broadly consistent with the trends seen in the geochemical proxy records: an increase in warm-water taxa coincided with the EECO, corroborating geochemical evidence for a temperature maximum in the SW Pacific during this interval.  The increase in the abundance and diversity of warm-water taxa and decrease in the abundance of cool-water taxa through the EECO supports previous suggestions that a warm-water mass (northward of the proto-Tasman Front) extended to ~55°S paleolatitude during this interval in response to enhanced poleward heat transport and intensification of the proto-East Australian Current. At the southernmost site, DSDP Site 277, a relatively short-lived influx of warm-water taxa at ~51 Ma suggests that warm waters expanded south at this time. However, greater diversity and abundance of warm-water taxa throughout the EECO at DSDP Site 207, suggests that the proto-East Australian Current exerted greater influence at this latitude for a longer duration than at Site 277. An increase in the abundance of cool-water taxa and decrease in diversity and abundance of warm-water taxa at all sites is recorded following the termination of the EECO. This corresponds with the contraction of the proto-Tasman Front due to weakened proto-East Australian Current flow and associated amplification of the proto-Ross Gyre.  Previous estimates of SSTs from geochemical proxies in the SW Pacific during the EECO indicate that there was virtually no latitudinal temperature gradient and temperatures were tropical to subtropical (>20°C). However, nannofossil data from this study indicate warm temperate conditions (~15–20°C) during the EECO, suggesting that a reduced latitudinal gradient was maintained through this interval, which is in agreement with climate models.</p>


1992 ◽  
Vol 6 ◽  
pp. 12-12
Author(s):  
Marie-Pierre Aubry

Calcareous nannoplankton diversity varied greatly during the Paleogene. From extremely reduced values (~10 species) in the early Paleocene (circa 66.4 to 66 Ma, age estimates from Berggren, Kent and Flynn, 1985) following the terminal Cretaceous extinctions, diversity increased progressively throughout the late Paleocene and early Eocene and reached a maximum (~120 species) in the early middle Eocene (circa 52–48 Ma). This was followed by a step-like decrease until the early Oligocene (circa 35 Ma) when minimal values (~37 species) were reached once again. After a stable low during the remainder of the early Oligocene, a moderate, increase occurred near the early/late Oligocene boundary (circa 30 Ma).Temperature has been regarded as the most important factor controlling the distribution of the calcareous nannoplankton following the characterisation of five temperature-controlled assemblages of living Coccolithophoridae in the Atlantic Ocean. Studies relative to variations in diversity in the calcareous nannoplankton throughout the Mesozoic and Cenozoic and among the extinct late Paleocene to Pliocene group Discoaster, and to changing biogeographic patterns during the Cenozoic have revealed an apparent relationship between composition of calcareous nannofossil assemblages and temperature as deduced from isotopic studies. This relationship, which is currently used to infer Paleogene climatic and oceanographic evolution from quantitative analyses of calcareous nannofossil assemblages, is however not a simple one as indicated by the fact that maximum diversity during the Paleogene (i.e., the early middle Eocene) did not occur during (but subsequently to) the warmest time (i.e., the latest Paleocene-earliest Eocene).Diversity changes in the Paleogene calcareous nannoplankton are strikingly similar to diversity changes in the Paleogene planktonic foraminifera, which have been shown to reflect fluctuations in nutrient availibility as indicated by oxygen and carbon isotopes. The parallel evolution in the two groups thus suggests that trophic levels in the photic zone played an important role in the Paleogene diversification of the calcareous nannoplankton. In the present day ocean, the calcareous nannoplankton (Coccolithophoridae) dominate the phytoplankton under oligotrophic conditions and tropical waters are characterized by highly diversified associations with strong vertical specific stratification. Only few species occur under meso- and eutrophic conditions, and there is no vertical stratification. Extremely low diversity during the earliest Paleocene followed by increasing diversity through the Paleocene and earliest Eocene is interpreted as reflecting the change from an essentially mesotrophic to an oligotrophic ocean, increased rates of speciation resulting from niche partitioning occasioned by increased oligotrophy, leading to strong vertical stratification of species in the photic zone. Decrease in diversity from middle Eocene to early Oligocene reflects, on the other hand, progressive eutrophication of the ocean as a result of climatic deterioration.


2021 ◽  
Author(s):  
◽  
Claire Louise Shepherd

<p>Earth’s climate underwent a long-term warming trend from the late Paleocene to early Eocene (~58–51 Ma), with global temperature reaching a sustained maximum during the Early Eocene Climatic Optimum (EECO; 53–50 Ma). Geochemical proxies indicate tropical or warm subtropical sea-surface temperature (SST) conditions in middle and high latitudes in the early Eocene, implying a very low latitudinal temperature gradient. This study investigates whether calcareous nannofossil assemblages in the southwest (SW) Pacific provide evidence of these conditions at middle latitudes in the early to middle Eocene, particularly during the EECO. Specifically, this study documents the biogeographic changes of warm- and cold-water nannofossil species along a paleolatitudinal transect through the EECO to track changes in water masses/ocean circulation at that time.  Early to middle Eocene calcareous nannofossil assemblages were examined from four sites along a latitudinal transect in the SW Pacific, extending from Lord Howe Rise in the north to Campbell Plateau in the south and spanning a paleolatitude of ~46–54°S. All of the sections studied in this project span nannofossil zones NP10–16 (Martini, 1971). The data indicate up to three regional unconformities through the sections: at mid-Waipara, Deep Sea Drilling Project (DSDP) Site 207 and 277, part or all of Zone NP10 (lower Waipawan) is missing; at Sites 207 and 277 a possible hiatus occurs within NP12 (upper Waipawan–lower Mangaorapan); and at all sites part or all of Zone NP15 (lower Bortonian) is missing. Results of this study indicate that nannofossil assemblages in the SW Pacific are more similar to floras at temperate to polar sites rather than those at tropical/subtropical sites. However, variations in the relative abundance of key species in the SW Pacific are broadly consistent with the trends seen in the geochemical proxy records: an increase in warm-water taxa coincided with the EECO, corroborating geochemical evidence for a temperature maximum in the SW Pacific during this interval.  The increase in the abundance and diversity of warm-water taxa and decrease in the abundance of cool-water taxa through the EECO supports previous suggestions that a warm-water mass (northward of the proto-Tasman Front) extended to ~55°S paleolatitude during this interval in response to enhanced poleward heat transport and intensification of the proto-East Australian Current. At the southernmost site, DSDP Site 277, a relatively short-lived influx of warm-water taxa at ~51 Ma suggests that warm waters expanded south at this time. However, greater diversity and abundance of warm-water taxa throughout the EECO at DSDP Site 207, suggests that the proto-East Australian Current exerted greater influence at this latitude for a longer duration than at Site 277. An increase in the abundance of cool-water taxa and decrease in diversity and abundance of warm-water taxa at all sites is recorded following the termination of the EECO. This corresponds with the contraction of the proto-Tasman Front due to weakened proto-East Australian Current flow and associated amplification of the proto-Ross Gyre.  Previous estimates of SSTs from geochemical proxies in the SW Pacific during the EECO indicate that there was virtually no latitudinal temperature gradient and temperatures were tropical to subtropical (>20°C). However, nannofossil data from this study indicate warm temperate conditions (~15–20°C) during the EECO, suggesting that a reduced latitudinal gradient was maintained through this interval, which is in agreement with climate models.</p>


1997 ◽  
Vol 34 (10) ◽  
pp. 1366-1378 ◽  
Author(s):  
Paul B. O'Sullivan ◽  
Larry S. Lane

Apatite fission-track data from 16 sedimentary and crystalline rock samples indicate rapid regional Early Eocene denudation within the onshore Beaufort–Mackenzie region of northwestern Canada. Rocks exposed in the area of the Big Fish River, Northwest Territories, cooled rapidly from paleotemperatures of >80–110 °C to <6 0°C at ca. 56 ± 2 Ma, probably in response to kilometre-scale denudation associated with regional structuring. The data suggest the region experienced a geothermal gradient of ~28 °C/km prior to rapid cooling, with ~2.7 km of section having been removed from the top of the exposed section in the Moose Channel Formation and ~3.8 km from the top of the exposed Cuesta Creek Member. Farther to the west, rocks exposed in the headwaters of the Blow River in the Barn Mountains, Yukon Territories, were exposed to paleotemperatures above 110 °C in the Late Paleocene prior to rapid cooling from these elevated paleotemperatures due to kilometre-scale denudation at ca. 56 ± 2 Ma. Exposure of these samples at the surface today requires that a minimum of ~3.8 km of denudation occurred since they began cooling below ~110 °C. The apatite analyses indicate that rocks exposed in the northern Yukon and Northwest Territories experienced rapid cooling during the Early Eocene in response to kilometre-scale denudation, associated with early Tertiary folding and thrusting in the northern Cordillera. Early Eocene cooling–uplift ages for onshore sections are slightly older than the Middle Eocene ages previously documented for the adjacent offshore foldbelt and suggest that the deformation progressed toward the foreland of the foldbelt through time.


2021 ◽  
Vol 17 (6) ◽  
pp. 2393-2425
Author(s):  
Peter K. Bijl ◽  
Joost Frieling ◽  
Margot J. Cramwinckel ◽  
Christine Boschman ◽  
Appy Sluijs ◽  
...  

Abstract. Sea surface temperature (SST) reconstructions based on isoprenoid glycerol dialkyl glycerol tetraether (isoGDGT) distributions from the Eocene southwest (SW) Pacific Ocean are unequivocally warmer than can be reconciled with state-of-the-art fully coupled climate models. However, the SST signal preserved in sedimentary archives can be affected by contributions of additional isoGDGT sources. Methods now exist to identify and possibly correct for overprinting effects on the isoGDGT distribution in marine sediments. Here, we use the current proxy insights to (re-)assess the reliability of the isoGDGT-based SST signal in 69 newly analyzed and 242 reanalyzed sediments at Ocean Drilling Program (ODP) Site 1172 (East Tasman Plateau, Australia) following state-of-the-art chromatographic techniques. We compare our results with paleoenvironmental and paleoclimatologic reconstructions based on dinoflagellate cysts. The resulting ∼ 130 kyr resolution Maastrichtian–Oligocene SST record based on the TetraEther indeX of tetraethers with 86 carbon atoms (TEX86) confirms previous conclusions of anomalous warmth in the early Eocene SW Pacific and remarkably cool conditions during the mid-Paleocene. Dinocyst diversity and assemblages show a strong response to the local SST evolution, supporting the robustness of the TEX86 record. Soil-derived branched GDGTs stored in the same sediments are used to reconstruct mean annual air temperature (MAAT) of the nearby land using the Methylation index of Branched Tetraethers with 5-methyl bonds (MBT'5me) proxy. MAAT is consistently lower than SST during the early Eocene, independent of the calibration chosen. General trends in SST and MAAT are similar, except for (1) an enigmatic absence of MAAT rise during the Paleocene–Eocene Thermal Maximum and Middle Eocene Climatic Optimum, and (2) a subdued middle–late Eocene MAAT cooling relative to SST. Both dinocysts and GDGT signals suggest a mid-shelf depositional environment with strong river runoff during the Paleocene–early Eocene progressively becoming more marine thereafter. This trend reflects gradual subsidence and more pronounced wet/dry seasons in the northward-drifting Australian hinterland, which may also explain the subdued middle Eocene MAAT cooling relative to that of SST. The overall correlation between dinocyst assemblages, marine biodiversity and SST changes suggests that temperature exerted a strong influence on the surface-water ecosystem. Finally, we find support for a potential temperature control on compositional changes of branched glycerol monoalkyl glycerol tetraethers (brGMGTs) in marine sediments. It is encouraging that a critical evaluation of the GDGT signals confirms that most of the generated data are reliable. However, this also implies that the high TEX86-based SSTs for the Eocene SW Pacific and the systematic offset between absolute TEX86-based SST and MBT'5me-based MAAT estimates remain without definitive explanation.


GeoArabia ◽  
2014 ◽  
Vol 19 (1) ◽  
pp. 117-140 ◽  
Author(s):  
Mohammad Alqudah ◽  
Mohammad Ali Hussein ◽  
Olaf G. Podlaha ◽  
Sander van den Boorn ◽  
Sadat Kolonic ◽  
...  

ABSTRACT Cretaceous and Paleogene marls, rich in total organic carbon, are widespread throughout Jordan and adjoining areas. Based on planktonic foraminifera these oil shales have been assigned a late Campanian–Paleocene age in previous studies. For the current analysis a total of 283 smear slides from five wells in central Jordan have been investigated for calcareous nannofossil biostratigraphy. Findings suggest a much more differentiated age model of the oil shales than previously proposed. The oil shales studied contain abundant calcareous nannofossil taxa of Eocene age along with varying abundances of Maastrichtian and Paleocene taxa. The encountered marker species Rhomboaster cuspis, Tribrachiatus bramlettei, Tribrachiatus orthostylus, Discoaster lodoensis, Coccolithus crassus, Discoaster sublodoensis, Nannotetrina quadrata, Reticulofenestra umbilicus and Chiasmolithus solitus, indicate an Early to Middle Eocene age, while the presence of Maastrichtian and Paleocene forms suggests major reworking. The presence of Cretaceous taxa reflects either subaerial erosive input from the hinterland or submarine reworking of Cretaceous strata within the basin. The highly variable amount of reworked material and associated deposition rates in the basin may represent changes in the tectonic setting during the Eocene. We propose that the high abundances of Cretaceous and Paleocene taxa reflect an increase in accommodation space by active graben flank movements. A dominance of Eocene taxa, on the other hand, indicates either periods of little accommodation space due to graben infill or inversion-type movements of the graben itself. In any case, the youngest Eocene and autochthonous taxa represent shallower or low topography graben phases.


2021 ◽  
Author(s):  
Irfan Sh. Asaad ◽  

Lithostratigraphy and microfacies analysis of the Avanah Formation (Middle Eocene) were studied in the Gomaspan section in the Bina Bawi anticline, northeast of Erbil city, Kurdistan Region, Iraq. The field observations refer that the formation attains 56 m of medium to thick bedded yellow limestone, grey dolomitic limestone and blue marly dolomitic limestone interbedded with thin beds of blue marl and dark grey shale with an interval of sandy limestone in the middle part and thin to medium bedded limestone interbedded with red mudstone. The petrographic study of 29 thin sections of Avanah carbonates revealed that the majority of the matrix is carbonate mud (micrite) with few microspar. The skeletal grains include benthic foraminifera, dasycladacean green algae, ostracods, calcispheres, pelecypods, rare planktonic foraminifera and bryozoa in addition to bioclasts. Non-skeletal grains encompass peloids, oncoids, intraclasts and extraclasts with common monocrystalline quartz. Based on the field observation and petrographic analysis, three different lithostratigraphic units were identified. They are in ascending order: A-Thick bedded dolomitic marly limestone interbedded with shale. B- Bedded dolomitic limestone interbedded with shale and marl. C- Thin to medium bedded limestone interbedded with red mudstone. Depending on detailed microfacies analysis of carbonate rocks, three main microfacies and 12 submicrofacies are recognized. From the sum of all petrographic, facies, textural analyses, it is concluded that Avanah Formation in Gomaspan section, was deposited in shallow marine environment, semi restricted lagoon, in lower and upper parts and open lagoon environment in the middle part interval.


2012 ◽  
Vol 86 (6) ◽  
pp. 973-978 ◽  
Author(s):  
Gregg F. Gunnell

Uintasoricines are diminutive plesiadapiforms that are found in the latest Paleocene through middle Eocene, predominantly in North America. They are not a diverse group but individual species may be locally abundant and they are a persistent element of the plesiadapiform radiation in North America surviving over a span of approximately 16 million years. Recent field work in southern Wyoming at South Pass has led to the discovery of a new genus and species of uintasoricine. The new form is smaller in tooth dimensions compared to other known uintasoricines, being slightly smaller thanUintasorex montezumicusfrom California. Both the newly described taxon andU. montezumicusare among the smallest plesiadapiforms yet known with body weights estimated to be 20 to 25 g. The sediments of the Cathedral Bluffs Tongue of the Wasatch Formation at South Pass contain a unique upland fauna—the presence of a distinctive uintasoricine in this assemblage adds further evidence to support the notion that this upland environment was a biodiversity hotspot during the latest early Eocene.


Sign in / Sign up

Export Citation Format

Share Document