A review of geomorphic processes and landforms in the Dry Valleys of southern Victoria Land: implications for evaluating climate change and ice-sheet stability

2013 ◽  
Vol 381 (1) ◽  
pp. 319-352 ◽  
Author(s):  
D. R. Marchant ◽  
S. L. Mackay ◽  
J. L. Lamp ◽  
A. T. Hayden ◽  
J. W. Head
2016 ◽  
Author(s):  
Devin Castendyk ◽  
◽  
Maciej K. Obryk ◽  
Sasha Z. Leidman ◽  
Michael Gooseff ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alizée Chemison ◽  
Gilles Ramstein ◽  
Adrian M. Tompkins ◽  
Dimitri Defrance ◽  
Guigone Camus ◽  
...  

AbstractStudies about the impact of future climate change on diseases have mostly focused on standard Representative Concentration Pathway climate change scenarios. These scenarios do not account for the non-linear dynamics of the climate system. A rapid ice-sheet melting could occur, impacting climate and consequently societies. Here, we investigate the additional impact of a rapid ice-sheet melting of Greenland on climate and malaria transmission in Africa using several malaria models driven by Institute Pierre Simon Laplace climate simulations. Results reveal that our melting scenario could moderate the simulated increase in malaria risk over East Africa, due to cooling and drying effects, cause a largest decrease in malaria transmission risk over West Africa and drive malaria emergence in southern Africa associated with a significant southward shift of the African rain-belt. We argue that the effect of such ice-sheet melting should be investigated further in future public health and agriculture climate change risk assessments.


2021 ◽  
Author(s):  
Joanna Davies ◽  
Anders Møller Mathiasen ◽  
Kristiane Kristensen ◽  
Christof Pearce ◽  
Marit-Solveig Seidenkrantz

<p>The polar regions exhibit some of the most visible signs of climate change globally; annual mass loss from the Greenland Ice Sheet (GrIS) has quadrupled in recent decades, from 51 ± 65 Gt yr<sup>−1</sup> (1992-2001) to 211 ± 37 Gt yr<sup>−1</sup> (2002-2011). This can partly be attributed to the widespread retreat and speed-up of marine-terminating glaciers. The Zachariae Isstrøm (ZI) is an outlet glacier of the Northeast Greenland Ice Steam (NEGIS), one of the largest ice streams of the GrIS (700km), draining approximately 12% of the ice sheet interior. Observations show that the ZI began accelerating in 2000, resulting in the collapse of the floating ice shelf between 2002 and 2003. By 2014, the ice shelf extended over an area of 52km<sup>2</sup>, a 95% decrease in area since 2002, where it extended over 1040km<sup>2</sup>. Paleo-reconstructions provide an opportunity to extend observational records in order to understand the oceanic and climatic processes governing the position of the grounding zone of marine terminating glaciers and the extent of floating ice shelves. Such datasets are thus necessary if we are to constrain the impact of future climate change projections on the Arctic cryosphere.</p><p>A multi-proxy approach, involving grain size, geochemical, foraminiferal and sedimentary analysis was applied to marine sediment core DA17-NG-ST8-92G, collected offshore of the ZI, on  the Northeast Greenland Shelf. The aim was to reconstruct changes in the extent of the ZI and the palaeoceanographic conditions throughout the Early to Mid Holocene (c.a. 12,500-5,000 cal. yrs. BP). Evidence from the analysis of these datasets indicates that whilst there has been no grounded ice at the site over the last 12,500 years, the ice shelf of the ZI extended as a floating ice shelf over the site between 12,500 and 9,200 cal. yrs. BP, with the grounding line further inland from our study site. This was followed by a retreat in the ice shelf extent during the Holocene Thermal Maximum; this was likely to have been governed, in part, by basal melting driven by Atlantic Water (AW) recirculated from Svalbard or from the Arctic Ocean. Evidence from benthic foraminifera suggest that there was a shift from the dominance of AW to Polar Water at around 7,500 cal. yrs. BP, although the ice shelf did not expand again despite of this cooling of subsurface waters.</p>


2012 ◽  
Vol 57 ◽  
pp. 85-94 ◽  
Author(s):  
Luigia Di Nicola ◽  
Carlo Baroni ◽  
Stefan Strasky ◽  
Maria Cristina Salvatore ◽  
Christian Schlüchter ◽  
...  

1993 ◽  
Vol 75 (4) ◽  
pp. 155 ◽  
Author(s):  
George H. Denton ◽  
David E. Sugden ◽  
David R. Marchant ◽  
Brenda L. Hall ◽  
Thomas I. Wilch

1994 ◽  
Vol 20 ◽  
pp. 55-60
Author(s):  
Anja L.L.M. Verbers ◽  
Volkmar Damm

Glacio-geological field work and radar ice-thickness sounding were carried out in the area between David and Mawson Glaciers. A subglacial topographic map has been compiled from radio-echo-sounding data. The northern part of this map shows that the trench of David Glacier reaches a depth of more than 1000 m below sea level. The area south of David Glacier comprises a landscape of nunatak clusters dissected by glaciated valleys with ice thicknesses as much as 800 m. Subglacial cirques occur at the outer margins of the nunatak clusters. A model for the regional glacial history is proposed. It starts with a major deglaciation in the Pliocene, which results in marine transgression in basins west of the Transantarctic Mountains. During the late Pliocene, the ice advanced towards the northeast, depositing a thin layer of (Sirius Group) till containing reworked mid-Pliocene marine diatoms. Due to accelerated mountain uplift, the ice cut iIlto the pre-Pliocene peneplain, eroding broad valleys. A period of ice-sheet retreat followed to expose a landscape of large nunataks separated by wide valleys. During this period, local cirque glaciation occurred. When the ice sheet advanced again, another phase of uplift forced the glaciers to cut deeper into the valleys. Probably since the Last Glacial Maximum the ice surface has lowered by about 100 m.


Sign in / Sign up

Export Citation Format

Share Document