Structural setting and detrital zircon U–Pb geochronology of Triassic–Cenozoic strata in the eastern Central Pamir, Tajikistan

2018 ◽  
Vol 483 (1) ◽  
pp. 605-630 ◽  
Author(s):  
John He ◽  
Paul Kapp ◽  
James B. Chapman ◽  
Peter G. DeCelles ◽  
Barbara Carrapa

AbstractIntegration of new geological mapping, detrital zircon geochronology, and sedimentary and metamorphic petrography south of the Muskol metamorphic dome in the Central Pamir terrane provides new constraints on the evolution of the Pamir orogen from Triassic to Late Oligocene time. Zircon U–Pb data show that the eastern Central Pamir includes Triassic strata and mélange that are of Karakul–Mazar/Songpan–Ganzi affinity and comprise the hanging wall of a thrust sheet that may root into the Tanymas Fault c. 35 km to the north. The Triassic rocks are unconformably overlain by Cretaceous strata that bear similarities to coeval units in the southern Qiangtang terrane and the Bangong Suture Zone of central Tibet. Finally, Oligocene or younger conglomerate and interbedded siltstone, the youngest documented strata in the Pamir Plateau proper, record an episode of juvenile magmatism at c. 32 Ma, which is absent in the extant rock record and other detrital compilations from the Pamir but overlaps in age with ultrapotassic volcanic rocks in central Tibet. Zircon Hf isotopic data from the Oligocene grains (εHf(t) ≈ +9.6) suggest a primary mantle contribution, consistent with the hypothesis of Late Eocene lithospheric removal beneath the Pamir Plateau.

2008 ◽  
Vol 145 (4) ◽  
pp. 463-474 ◽  
Author(s):  
SHEN LIU ◽  
RUI-ZHONG HU ◽  
CAI-XIA FENG ◽  
HAI-BO ZOU ◽  
CAI LI ◽  
...  

AbstractGeochemical and Sr–Nd–Pb isotopic data are presented for volcanic rocks from Zougouyouchaco (30.5 Ma) and Dogai Coring (39.7 Ma) of the southern and middle Qiangtang block in northern Tibet. The volcanic rocks are high-K calc-alkaline trachyandesites and dacites, with SiO2 contents ranging from 58.5 to 67.1 wt % The rocks are enriched in light REE (LREE) and contain high Sr (649 to 986 ppm) and relatively low Yb (0.8 to 1.2 ppm) and Y (9.5 to 16.6 ppm) contents, resulting in high La/Yb (29–58) and Sr/Y (43–92) ratios, as well as relatively high MgO contents and Mg no., similar to the compositions of adakites formed by slab melting in subduction zones. However, the adakitic rocks in the Qiangtang block are characterized by relatively low εNd(t) values (−3.8 to −5.0) and highly radiogenic Sr ((87Sr/86Sr)i=0.706–0.708), which are inconsistent with an origin by slab melting. The geochemistry and tectonics indicate that the adakitic volcanic rocks were most likely derived from partial melting of delaminated lower continental crust. As the pristine adakitic melts rose, they interacted with the surrounding mantle peridotite, elevating their MgO values and Mg numbers.


The 1:500,000 coloured geological map of the traverse route combines observations from the Geotraverse, previous mapping, and interpretation of orbital images. The position of all localities visited by Geotraverse participants and basic geological data collected by them along the traverse route are shown on a set of maps originally drawn at 1:100,000 scale, reproduced on microfiche for this publication. More detailed mapping, beyond a single line of section, was achieved in five separate areas. The relationships between major rock units in these areas, and their significance, are outlined in this paper. Near Gyanco, (Lhasa Terrane) an ophiolite nappe, apparently connected with outcrops of ophiolites in the Banggong Suture about 100 km to the north, was under thrust by a discontinuous slice of Carboniferous—Permian clastic rocks and limestone, contrary to a previous report of the opposite sequence. At Amdo, a compressional left-lateral strike-slip fault zone has modified relationships along the Banggong Suture. Near Wuli, (northern Qiangtang Terrane) limited truncation of Triassic strata at the angular unconformity below Eocene redbeds demonstrates that most of the folding here is of Tertiary age. The map of the nearby Erdaogou region displays strong fold and thrust-shortening of the Eocene redbeds, evidence of significant crustal shortening after the India- Asia collision began. In the Xidatan-Kunlun Pass area, blocks of contrasting Permo—Triassic rocks are separated by east-trending faults. Some of these faults are ductile and of late Triassic — early Jurassic age, others are brittle and part of the Neogene—Quaternary Kunlun leftlateral strike-slip fault system. Some more significant remaining problems that geological mapping might help to solve are discussed briefly, including evidence for a possible additional ophiolitic suture within the Qiangtang Terrane.


2015 ◽  
Vol 7 (1) ◽  
pp. 329-367 ◽  
Author(s):  
Z. Zhao ◽  
P. D. Bons ◽  
G. Wang ◽  
A. Soesoo ◽  
Y. Liu

Abstract. Conflicting interpretations of the > 500 km long, east-west trending Qiangtang Metamorphic Belt have led to very different and contradicting models for the Permo-Triassic tectonic evolution of Central Tibet. We define two metamorphic events, one that only affected Pre-Ordovician basement rocks and one subduction-related Triassic high-pressure metamorphism event. Detailed mapping and structural analysis allowed us to define three main units that were juxtaposed due to collision of the North and South Qiangtang terranes after closure of the Ordovician-Triassic ocean that separated them. The base is formed by the Precambrian-Carboniferous basement, followed by non-metamorphic ophiolitic mélange, containing mafic rocks that range in age from the Ordovician to Middle Triassic. The top of the sequence is formed by strongly deformed sedimentary mélange that contains up to > 10 km size rafts of both un-metamorphosed Permian sediments and high-pressure blueschists. We propose that the high-pressure rocks were exhumed from underneath the South Qiangtang Terrane in an extensional setting caused by the pull of the northward subducting slab of the Shuanghu-Tethys. High-pressure rocks, sedimentary mélange and margin sediments were thrust on top of the ophiolitic mélange that was scraped off the subducting plate. Both units were subsequently thrust on top of the South Qiantang Terrane continental basement. Onset of Late Triassic sedimentation marked the end of the amalgamation of both Qiangtang terranes and the beginning of spreading between Qiantang and North Lhasa to the south, leading to the deposition of thick flysch deposits in the Jurassic.


2017 ◽  
Vol 54 (2) ◽  
pp. 69-85 ◽  
Author(s):  
David Malone ◽  
John Craddock ◽  
Kacey Garber ◽  
Jarek Trela

The Aycross Formation is the basal unit of the Absaroka Volcanic Supergroup in the southern Absaroka Range and consists of volcanic sandstone, mudstone, breccia, tuff and conglomerate. The Aycross was deposited during the waning stages of the Laramide Orogeny and the earliest phases of volcanism in the Absaroka Range. U-Pb geo-chronology using laser ablation multicollector inductively coupled plasma mass spectrometry LA-ICP-MS was performed on detrital zircons collected from an Aycross sandstone bed at Falls Campground east of Togwotee Pass. The detrital zircon age spectrum ranged fom ca 47 to 2856 Ma. Peak ages, as indicated by the zircon age probability density plot are ca. 51, 61, and 72 Ma. Tertiary zircons were the most numerous (n = 32), accounting for 42% of the zircon ages spectrum. Of these 19 are Eocene, and 13 are Paleocene, which are unusual ages in the Wyoming-Idaho-Montana area. Mesozoic zircons (n = 21) comprise 27% of the age spectrum and range in age from 68–126 Ma; all but one being late Cretaceous in age. No Paleozoic zircons are present. Proterozoic zircons range in age from 1196–2483 Ma, and also consist of 27% of the age spectrum. The maximum depositional age of the Aycross Formation is estimated to be 50.05 +/− 0.65 Ma based on weighted mean of the eight youngest grains. The Aycross Formation detrital zircon age spectrum is distinct from that of other 49–50 Ma rocks in northwest Wyoming, which include the Hominy Peak and Wapiti Formations and Crandall Conglomerate. The Aycross must have been derived largely from distal westerly source areas, which include the late Cretaceous and Paleocene Bitteroot Lobe of the Idaho Batholith. In contrast, the middle Eocene units further to the north must have been derived from erosion of the Archean basement-cored uplift of the Laramide Foreland in southwest Montana.


Sign in / Sign up

Export Citation Format

Share Document