scholarly journals 40Ar/39Ar thermochronology in the Ios basement terrane resolves the tectonic significance of the South Cyclades Shear Zone

2019 ◽  
Vol 487 (1) ◽  
pp. 291-313 ◽  
Author(s):  
Marnie Forster ◽  
Oleg Koudashev ◽  
Ruoran Nie ◽  
Sonia Yeung ◽  
Gordon Lister

AbstractWe conducted 39Ar diffusion experiments using potassium feldspar from the South Cyclades Shear Zone on Ios, in the Cyclades, Aegean Sea, Greece. Irradiated samples were step-heated in an ultra-high-vacuum resistance furnace attached to a mass spectrometer, thus also allowing 40Ar/39Ar geochronology. Conjoint inversion of these datasets allowed estimation of the relevant diffusion parameters, which were then used to forward model the effect of arbitrary temperature–time histories. Simulations used Monte Carlo methods to improve approximations to the observed age spectra. Two periods of rapid cooling could be inferred. The South Cyclades Shear Zone commenced operation during or shortly after the Eocene–Oligocene transition. Episodes of south-directed movement continued into Early Miocene time, however, with the footwall still hot enough to cause biotite ± garnet metamorphic mineral growth at the base of the overlying, already substantially exhumed, eclogite–blueschist unit. Since its footwall continued to cool, the South Cyclades Shear Zone was an extensional shear zone during both episodes of its operation.

2021 ◽  
Author(s):  
Gordon Lister ◽  
Marnie Forster ◽  
Jack Muston ◽  
Jason Price ◽  
Gianreto Manatschal

<p>Here we demonstrate conjoint inversion of data combined from <sup>40</sup>Ar/<sup>39</sup>Ar geochronology and ultra-high-vacuum (UHV) <sup>39</sup>Ar diffusion experiments using potassium feldspar. The method allows precise definition of diffusion parameters for a collection of domains, using an approximation to a fractal geometry. Using the MacArgon program, we could constrain possible temperature histories followed by individual mineral grains in and below the orogenic lid of the European Alps, during its history of mountain building. Tests of the sensitivity of the obtained fits provides insight into the possible range of allowed temperature-time (T-t) paths, and recognition of ‘events’ during which microstructural modification may have taken place. The results suggest a sequence of abrupt cooling events, which could reflect, either: i) cycles of crustal shortening followed by detachment faulting; or ii) initial terrane-stacking beneath the orogenic lid followed by repeated rapid crustal stretching events, each event involving upward stepping of the active detachment fault. Substantial movement on low-angle normal faults and shear zones has taken place, consistent with extreme extension of the mountain belt at high-angles to the convergence direction, in front of the advancing Adriatic indentor. The magnitude of the temperature drop implies that a rapid extension event took place at the time of the Eocene—Oligocene transition, and reduced the thickness of the orogenic lid to a few kilometres.</p>


2020 ◽  
Vol 113 (1-2) ◽  
pp. 139-153
Author(s):  
Gerit E. U. Griesmeier ◽  
Christoph Iglseder ◽  
Ralf Schuster ◽  
Konstantin Petrakakis

AbstractThis work describes the Freyenstein Fault System, which extends over 45 km in the southeastern part of the Bohemian Massif (Lower Austria). It represents a ductile shear zone overprinted by a brittle fault located at the eastern edge of the South Bohemian Batholith towards the Moldanubian nappes. It affects Weinsberg- and a more “fine-grained” granite, interlayered aplitic granite and pegmatite dikes as well as paragneiss of the Ostrong Nappe System. The ductile shear zone is represented by approximately 500 m thick greenschist-facies mylonite dipping about 60° to the southeast. Shear-sense criteria like clast geometries, SCC`-type shear band fabrics as well as abundant microstructures show top to the south/ southsouthwest normal shearing with a dextral strike-slip component. Mineral assemblages in mylonitized granitoid consist of pre- to syntectonic muscovite- and biotite-porphyroclasts as well as dynamically recrystallized potassium feldspar, plagioclase and quartz. Dynamic recrystallization of potassium feldspar and the stability of biotite indicate upper green-schist-facies metamorphic conditions during the early phase of deformation. Fluid infiltration at lower greenschist-facies conditions led to local sericitization of feldspar and synmylonitic chloritisation of biotite during a later stage of ductile deformation. Finally, a brittle overprint by a north-south trending, subvertical, sinistral strike-slip fault that shows a normal component is observed. Ductile normal shearing along the Freyenstein Shear Zone is interpreted to have occurred between 320 Ma and c. 300 Ma. This time interval is indicated by literature data on the emplacement of the hostrock and cooling below c. 300°C inferred from two Rb-Sr biotite ages measured on undeformed granites close to the shear zone yielding 309.6 ± 3 Ma and 290.9 ± 2.9 Ma, respectively. Brittle sinistral strike-slip faulting at less than 300°C presumably took place not earlier than 300 Ma. Early ductile shearing along the Freyenstein Fault System may be genetically, but not kinematically linked to the Strudengau Shear Zone, as both acted in an extensional regime during late Variscan orogenic collapse. A relation to other major northeast-southwest trending faults of this part of the Bohemian Massif (e.g. the Vitis-Pribyslav Fault System) is indicated for the phase of brittle sinistral movement.


2021 ◽  
Author(s):  
Jack Muston ◽  
Marnie Forster ◽  
Davood Vasegh ◽  
Conrad Alderton ◽  
Shawn Crispin ◽  
...  

Abstract. The Martabe deposits in Sumatra, Indonesia formed in a shallow crustal epithermal environment (200–350 °C) associated with mafic intrusions, usually recognised in domes, adjacent to an active right-lateral wrench system. Ten samples containing alunite were collected for high-resolution geochronology, to determine if overprinting fluid systems could be recognised by dating alunite separates. The heating time for each step was chosen to ensure reasonable uniformity in terms of the incremental percentage of 39Ar gas release during each of many steps, allowing age spectra to be analysed using the method of asymptotes and limits. Several distinct growth events could be recognised. In addition, each sample was subjected to ultra-high-vacuum (UHV) furnace step-heating, and 39Ar diffusion experiments conducted at the same time as 40Ar/39Ar geochronology, to determine the argon retentivity of the mineral grains being analysed. The heating schedule ensured Arrhenius data uniformly populated the inverse temperature axis, with sufficient detail to allow the application of the Fundamental Asymmetry Principle (FAP) during analysis of the Arrhenius spectrum. Results show activation energies between 370–660 kJ/mol. Application of Dodson’s recursion determines that closure temperatures would range from 400–560 °C for a cooling rate of 20 °C/Ma, which is higher than any possible temperature to be expected in the natural system. This gives confidence that the ages represent growth during periods of active fluid movement and alteration, since the deposit formed at temperatures < 200 °C at a depth of < 2 km. We conclude that gold in the Purnama pit was the result of fluid rock interactions during very short-lived mineral growth episodes at ~ 2.25 and ~2.00 Ma.


2017 ◽  
Vol 43 (1) ◽  
pp. 72 ◽  
Author(s):  
D. Papanikolaou

Present day location and geometry of the Hellenic arc and trench system is only a small portion of the previously developed Hellenic arc that created the Hellenides orogenic system. The timing of differentiation is constrained in Late Miocene, when the arc was divided in a northern and a southern segment. This is based on: a) the dating of the last compressive structures observed all along the Hellenides during Oligocene to Middle-Late Miocene, b) on the time of initiation of the Kephalonia transform fault, c) on the time of opening of the North Aegean Basin and d) on the time of opening of new arc parallel basins in the south and new transverse basins in the central shear zone, separating the rapidly moving southwestwards Hellenic subduction system from the slowly converging system of the Northern Hellenides. The driving mechanism of the arc differentiation is the heterogeneity produced by the different subducting slabs in the north (continental) and in the south (oceanic) and the resulted shear zone because of the retreating plate boundary producing a roll back mechanism in the present arc and trench system. The paleogeographic reconstructions of the Hellenic arc and surrounding areas show the shortening of the East Mediterranean oceanic area, following the slow convergence rate of the European and African plates plus the localised shortening following the rapid Hellenic subduction rate. The result is that the frontal parts of the accretionary prism developed in front of the Hellenic arc have reached the African continent in Cyrenaica whereas on the two sides the basinal parts of the Ionian and Levantine basins are still preserved before their final subduction and closure. The extension produced in the upper plate has resulted in the subsidence of the Aegean Sea and the creation of several neotectonic basins in southern continental Greece in contrast to the absence of new basins in the northern segment since Late Miocene.


Author(s):  
George H. N. Riddle ◽  
Benjamin M. Siegel

A routine procedure for growing very thin graphite substrate films has been developed. The films are grown pyrolytically in an ultra-high vacuum chamber by exposing (111) epitaxial nickel films to carbon monoxide gas. The nickel serves as a catalyst for the disproportionation of CO through the reaction 2C0 → C + CO2. The nickel catalyst is prepared by evaporation onto artificial mica at 400°C and annealing for 1/2 hour at 600°C in vacuum. Exposure of the annealed nickel to 1 torr CO for 3 hours at 500°C results in the growth of very thin continuous graphite films. The graphite is stripped from its nickel substrate in acid and mounted on holey formvar support films for use as specimen substrates.The graphite films, self-supporting over formvar holes up to five microns in diameter, have been studied by bright and dark field electron microscopy, by electron diffraction, and have been shadowed to reveal their topography and thickness. The films consist of individual crystallites typically a micron across with their basal planes parallel to the surface but oriented in different, apparently random directions about the normal to the basal plane.


Author(s):  
R. H. Geiss ◽  
R. L. Ladd ◽  
K. R. Lawless

Detailed electron microscope and diffraction studies of the sub-oxides of vanadium have been reported by Cambini and co-workers, and an oxidation study, possibly complicated by carbon and/or nitrogen, has been published by Edington and Smallman. The results reported by these different authors are not in good agreement. For this study, high purity polycrystalline vanadium samples were electrochemically thinned in a dual jet polisher using a solution of 20% H2SO4, 80% CH3OH, and then oxidized in an ion-pumped ultra-high vacuum reactor system using spectroscopically pure oxygen. Samples were oxidized at 350°C and 100μ oxygen pressure for periods of 30,60,90 and 160 minutes. Since our primary interest is in the mechanism of the low pressure oxidation process, the oxidized samples were cooled rapidly and not homogenized. The specimens were then examined in the HVEM at voltages up to 500 kV, the higher voltages being necessary to examine thick sections for which the oxidation behavior was more characteristic of the bulk.


Author(s):  
A. V. Crewe

The high resolution STEM is now a fact of life. I think that we have, in the last few years, demonstrated that this instrument is capable of the same resolving power as a CEM but is sufficiently different in its imaging characteristics to offer some real advantages.It seems possible to prove in a quite general way that only a field emission source can give adequate intensity for the highest resolution^ and at the moment this means operating at ultra high vacuum levels. Our experience, however, is that neither the source nor the vacuum are difficult to manage and indeed are simpler than many other systems and substantially trouble-free.


Author(s):  
L. E. Murr ◽  
G. Wong

Palladium single-crystal films have been prepared by Matthews in ultra-high vacuum by evaporation onto (001) NaCl substrates cleaved in-situ, and maintained at ∼ 350° C. Murr has also produced large-grained and single-crystal Pd films by high-rate evaporation onto (001) NaCl air-cleaved substrates at 350°C. In the present work, very large (∼ 3cm2), continuous single-crystal films of Pd have been prepared by flash evaporation onto air-cleaved (001) NaCl substrates at temperatures at or below 250°C. Evaporation rates estimated to be ≧ 2000 Å/sec, were obtained by effectively short-circuiting 1 mil tungsten evaporation boats in a self-regulating system which maintained an optimum load current of approximately 90 amperes; corresponding to a current density through the boat of ∼ 4 × 104 amperes/cm2.


Sign in / Sign up

Export Citation Format

Share Document