An overview of the plumbing systems of Large Igneous Provinces and their significance

2021 ◽  
pp. SP518-2021-167
Author(s):  
Rajesh K. Srivastava ◽  
Richard E. Ernst ◽  
Kenneth L. Buchan ◽  
Michiel de Kock

AbstractIdentification of large volume, short duration mafic magmatic events of intraplate affinity in both continental and oceanic settings on the Earth and other planets provides invaluable clues for understanding several vital geological issues of current concern. Of particular importance is understanding the assembly and dispersal of supercontinents through Earth's history, dramatic climate change events including mass extinctions, and processes that have produced a wide range of LIP-related resources such as Ni-Cu-PGE, Au, U, base metals, and petroleum. This current volume presents some of the latest developments and new information on the temporal and spatial distribution of LIPs in both the Precambrian and Phanerozoic, their origin, the plumbing system of mafic dyke swarms, sill provinces, and layered inrusions, and links to mantle plumes/superplumes events, supercontinent reconstructions and associated metallogeny.

2021 ◽  
Author(s):  
Anna Klos ◽  
Jürgen Kusche ◽  
Artur Lenczuk ◽  
Grzegorz Leszczuk ◽  
Janusz Bogusz

<p>Global Positioning System (GPS) stations are affected by a plethora of real and system-related signals and errors that occur at various temporal and spatial resolutions. Geophysical changes related to mass redistribution within the Earth system, common mode components, instability of GPS monuments or thermal expansion of ground, all contribute to the GPS-derived displacement time series. Different spatial resolutions that real and system-related errors occur within are covered thanks to the global networks of GPS stations, characterized presently by an unprecedented spatial density. Various temporal resolutions are covered by displacement time series which span even 25 years now, as estimated for the very first stations established. However, since the GPS sensitivity remains unrecognized, retrieving one signal from this wide range of processes may be very uncertain. Up to now, a comparison between GPS-observed displacement time series and displacements predicted by a set of models, as e.g. environmental loading models, was used to demonstrate the accuracy of the model to predict the observed phenomena. Such a comparison is, however, dependent on the accuracy of models and also on the sensitivity of individual GPS stations. We present a new way to identify the GPS sensitivity, which is based on benchmarking of individual GPS stations using statistical clustering approaches. We focus on regional sets of GPS stations located in Europe, where technique-related signals cover real geophysical changes for many GPS permanent stations and those located in South America and Asia, where hydrological and atmospheric loadings dominate other effects. We prove that combining GPS stations into smaller sets improves our understanding of real and system-related signals and errors.</p>


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Jaime Urrutia-Fucugauchi ◽  
Ligia Pérez-Cruz

Research frontiers in geophysics are being expanded, with development of new fields resulting from technological advances such as the Earth observation satellite network, global positioning system, high pressure-temperature physics, tomographic methods, and big data computing. Planetary missions and enhanced exoplanets detection capabilities, with discovery of a wide range of exoplanets and multiple systems, have renewed attention to models of planetary system formation and planet’s characteristics, Earth’s interior, and geodynamics, highlighting the need to better understand the Earth system, processes, and spatio-temporal scales. Here we review the emerging interconnections resulting from advances in planetary sciences, geodynamics, high pressure-temperature physics, meteorite impacts, and mass extinctions.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Changdi Xue ◽  
Hua Wu ◽  
Xiaoguang Jiang

Drought is a worldwide natural disaster with a wide range of influences and a long duration, which has a huge impact on the agricultural production activities and social economy of local residents. The Belt and Road Initiative has always received much attention due to its special geographical location and great potential for economic development. At the same time, the Belt and Road region is also deeply affected by drought, especially in some countries and regions, where the agricultural infrastructure is weak and the ecological environment is fragile. How to effectively monitor and evaluate drought has become an urgent problem to be solved. In this study, the ERA5 atmospheric reanalysis data were used, and the self-calibrating Palmer Drought Severity Index was combined with Breaks for Additive Seasonal and Trend (BFAST) to study the temporal and spatial distribution of the 1989–2017 monthly scale of drought in different climate regions of the Belt and Road region. The results show that the overall change trend of arid area shows a change of “up-down-up-down.” The winter drought area is larger than the summer drought area, and the drought center gradually moves from the Southeast Asia region in winter to the West–Central Asia region in summer. In the past five years, the drought area decreased gradually at the rate of approximately 0.38 million km2 per year.


Elements ◽  
2019 ◽  
Vol 15 (5) ◽  
pp. 301-306 ◽  
Author(s):  
Celina A. Suarez ◽  
Marie Edmonds ◽  
Adrian P. Jones

Carbon is one of the most important elements on Earth. It is the basis of life, it is stored and mobilized throughout the Earth from core to crust and it is the basis of the energy sources that are vital to human civilization. This issue will focus on the origins of carbon on Earth, the roles played by large-scale catastrophic carbon perturbations in mass extinctions, the movement and distribution of carbon in large igneous provinces, and the role carbon plays in icehouse–greenhouse climate transitions in deep time. Present-day carbon fluxes on Earth are changing rapidly, and it is of utmost importance that scientists understand Earth's carbon cycle to secure a sustainable future.


Author(s):  
S. Voronkova

The article discusses ways to obtain information about risk factors and the health status of the population. The article describes a new information system «labor Medicine», which allows to organize the collection of a wide range of data for further analysis and application in the activities of various Executive authorities, public organizations, foundations, legal entities and citizens. It is proposed to improve this system by expanding the types of information collected, creating a passport for health promotion organizations, as well as integration with systems that are being implemented in the Russian Federation for managing the health of the working-age population in the context of state policy in the field of Informatization.


Sign in / Sign up

Export Citation Format

Share Document