scholarly journals Designing Strong Privacy Metrics Suites Using Evolutionary Optimization

2021 ◽  
Vol 24 (2) ◽  
pp. 1-35
Author(s):  
Isabel Wagner ◽  
Iryna Yevseyeva

The ability to measure privacy accurately and consistently is key in the development of new privacy protections. However, recent studies have uncovered weaknesses in existing privacy metrics, as well as weaknesses caused by the use of only a single privacy metric. Metrics suites, or combinations of privacy metrics, are a promising mechanism to alleviate these weaknesses, if we can solve two open problems: which metrics should be combined and how. In this article, we tackle the first problem, i.e., the selection of metrics for strong metrics suites, by formulating it as a knapsack optimization problem with both single and multiple objectives. Because solving this problem exactly is difficult due to the large number of combinations and many qualities/objectives that need to be evaluated for each metrics suite, we apply 16 existing evolutionary and metaheuristic optimization algorithms. We solve the optimization problem for three privacy application domains: genomic privacy, graph privacy, and vehicular communications privacy. We find that the resulting metrics suites have better properties, i.e., higher monotonicity, diversity, evenness, and shared value range, than previously proposed metrics suites.

2021 ◽  
Vol 7 (3) ◽  
pp. 289-318
Author(s):  
Xiao-Ming Fu ◽  
Jian-Ping Su ◽  
Zheng-Yu Zhao ◽  
Qing Fang ◽  
Chunyang Ye ◽  
...  

AbstractA geometric mapping establishes a correspondence between two domains. Since no real object has zero or negative volume, such a mapping is required to be inversion-free. Computing inversion-free mappings is a fundamental task in numerous computer graphics and geometric processing applications, such as deformation, texture mapping, mesh generation, and others. This task is usually formulated as a non-convex, nonlinear, constrained optimization problem. Various methods have been developed to solve this optimization problem. As well as being inversion-free, different applications have various further requirements. We expand the discussion in two directions to (i) problems imposing specific constraints and (ii) combinatorial problems. This report provides a systematic overview of inversion-free mapping construction, a detailed discussion of the construction methods, including their strengths and weaknesses, and a description of open problems in this research field.


2015 ◽  
Vol 1120-1121 ◽  
pp. 670-674
Author(s):  
Abdelmadjid Ait Yala ◽  
Abderrahmanne Akkouche

The aim of this work is to define a general method for the optimization of composite patch repairing. Fracture mechanics theory shows that the stress intensity factor tends towards an asymptotic limit K∞.This limit is given by Rose’s formula and is a function of the thicknesses and mechanical properties of the cracked plate, the composite patch and the adhesive. The proposed approach consists in considering this limit as an objective function that needs to be minimized. In deed lowering this asymptote will reduce the values of the stress intensity factor hence optimize the repair. However to be effective this robust design must satisfy the stiffness ratio criteria. The resolution of this double objective optimization problem with Matlab program allowed us determine the appropriate geometric and mechanical properties that allow the optimum design; that is the selection of the adhesive, the patch and their respective thicknesses.


Author(s):  
Dang Thi Thu Hien ◽  
Hoang Xuan Huan ◽  
Le Xuan Minh Hoang

Radial Basis Function (RBF) neuron network is being applied widely in multivariate function regression. However, selection of neuron number for hidden layer and definition of suitable centre in order to produce a good regression network are still open problems which have been researched by many people. This article proposes to apply grid equally space nodes as the centre of hidden layer. Then, the authors use k-nearest neighbour method to define the value of regression function at the center and an interpolation RBF network training algorithm with equally spaced nodes to train the network. The experiments show the outstanding efficiency of regression function when the training data has Gauss white noise.


Author(s):  
Ahmed Fahim ◽  

The k-means is the most well-known algorithm for data clustering in data mining. Its simplicity and speed of convergence to local minima are the most important advantages of it, in addition to its linear time complexity. The most important open problems in this algorithm are the selection of initial centers and the determination of the exact number of clusters in advance. This paper proposes a solution for these two problems together; by adding a preprocess step to get the expected number of clusters in data and better initial centers. There are many researches to solve each of these problems separately, but there is no research to solve both problems together. The preprocess step requires o(n log n); where n is size of the dataset. This preprocess step aims to get initial portioning of data without determining the number of clusters in advance, then computes the means of initial clusters. After that we apply k-means on original data using the resulting information from the preprocess step to get the final clusters. We use many benchmark datasets to test the proposed method. The experimental results show the efficiency of the proposed method.


Author(s):  
Yulong Tian ◽  
Tao Gao ◽  
Weifang Zhai ◽  
Yaying Hu ◽  
Xinfeng Li

In this paper, a genetic algorithm with sexual reproduction and niche selection technology is proposed. Simple genetic algorithm has been successfully applied to many evolutionary optimization problems. But there is a problem of premature convergence for complex multimodal functions. To solve it, the frame and realization of niche genetic algorithm based on sexual reproduction are presented. Age and sexual structures are given to the individuals referring the sexual reproduction and “niche” phenomena, importing the niche selection technology. During age and sexual operators, different evolutionary parameters are given to the individuals with different age and sexual structures. As a result, this genetic algorithm can combat premature convergence and keep the diversity of population. The testing for Rastrigin function and Shubert function proves that the niche genetic algorithm based on sexual reproduction is effective.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3748 ◽  
Author(s):  
Endika Urresti-Padrón ◽  
Marcin Jakubek ◽  
Wojciech Jaworski ◽  
Michał Kłos

The current European policy roadmap aims at forcing the TSOs to coordinate remedial actions used for relieving the congestions in the synchronous power system. In this paper, an optimization problem for coordinated congestion management is described and its results obtained for a real European use cases created in the H2020 EU-SysFlex project are presented. First of all, these results prove the feasibility of a central optimization problem for the coordination of the cross-border congestion management process. Next, the formulated optimization problem is used to tackle the issue of planning the investments in phase-shifting transformers (PSTs), for the purpose of increasing the efficiency/decreasing the cost of congestion management. Finally, this paper introduces two optimization-based indicators for pre-selecting the investment sites, which may be used to support the decision makers aiming at decreasing the costs of coordinated congestion management.


1983 ◽  
Vol 40 (5) ◽  
pp. 580-587 ◽  
Author(s):  
K. D. Walker ◽  
R. B. Rettig ◽  
R. Hilborn

Our objective was to determine whether formal decision analysis could assist fishery managers in Oregon to evaluate alternative strategies with respect to allocation and production of wild and hatchery coho salmon. The method chosen given multiple objectives and uncertainty is multiattribute utility analysis. The analytical model consists of two main components: (1) a computer model that simulates the life cycle of hatchery and stream spawning coho salmon given environmental variation, different hatchery juvenile release levels, and harvest rates and (2) an objective function that evaluates the aggregate levels of catch and escapement resulting from alternative release levels and harvest rates. The approach was used to rank the expected outcomes from 12 proposed policies. We concluded that (1) the most effective policy is achieved with a relatively low harvest rate and high smolt release level, (2) selection of a particular harvest rate is the most important decision variable, and (3) a large smolt release level can be maintained unless such releases adversely decrease the ocean survival of stream spawning coho. If the agency is to be significantly helped, the analysis must be expanded to involve a larger number of decision makers, incorporate additional objectives such as catch variability, and include a finer level of detail in the simulation model.


AI Magazine ◽  
2011 ◽  
Vol 32 (1) ◽  
pp. 15 ◽  
Author(s):  
Matthew E. Taylor ◽  
Peter Stone

Transfer learning has recently gained popularity due to the development of algorithms that can successfully generalize information across multiple tasks. This article focuses on transfer in the context of reinforcement learning domains, a general learning framework where an agent acts in an environment to maximize a reward signal. The goals of this article are to (1) familiarize readers with the transfer learning problem in reinforcement learning domains, (2) explain why the problem is both interesting and difficult, (3) present a selection of existing techniques that demonstrate different solutions, and (4) provide representative open problems in the hope of encouraging additional research in this exciting area.


Algorithms ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 34
Author(s):  
Mage Marmol ◽  
Leandro do C. Martins ◽  
Sara Hatami ◽  
Angel A. Juan ◽  
Vicenc Fernandez

From brick-and-mortar stores to omnichannel retail, the efficient selection of products to be displayed on store tables, advertising brochures, or online front pages has become a critical issue. One possible goal is to maximize the overall ‘attractiveness’ level of the displayed items, i.e., to enhance the shopping experience of our potential customers as a way to increase sales and revenue. With the goal of maximizing the total attractiveness value for the visiting customers over a multi-period time horizon, this paper studies how to configure an assortment of products to be included in limited display spaces, either physical or online. In order to define a realistic scenario, several constraints are considered for each period and display table: (i) the inclusion of both expensive and non-expensive products on the display tables; (ii) the diversification of product collections; and (iii) the achievement of a minimum profit margin. Moreover, the attractiveness level of each product is assumed to be dynamic, i.e., it is reduced if the product has been displayed in a previous period (loss of novelty) and vice versa. This generates dependencies across periods. Likewise, correlations across items are also considered to account for complementary or substitute products. In the case of brick-and-mortar stores, for instance, solving this rich multi-period product display problem enables them to provide an exciting experience to their customers. As a consequence, an increase in sales revenue should be expected. In order to deal with the underlying optimization problem, which contains a quadratic objective function in its simplest version and a non-smooth one in its complete version, two biased-randomized metaheuristic algorithms are proposed. A set of new instances has been generated to test our approach and compare its performance with that of non-linear solvers.


Sign in / Sign up

Export Citation Format

Share Document