scholarly journals Multi-View Collaborative Network Embedding

2021 ◽  
Vol 15 (3) ◽  
pp. 1-18
Author(s):  
Sezin Kircali Ata ◽  
Yuan Fang ◽  
Min Wu ◽  
Jiaqi Shi ◽  
Chee Keong Kwoh ◽  
...  

Real-world networks often exist with multiple views, where each view describes one type of interaction among a common set of nodes. For example, on a video-sharing network, while two user nodes are linked, if they have common favorite videos in one view, then they can also be linked in another view if they share common subscribers. Unlike traditional single-view networks, multiple views maintain different semantics to complement each other. In this article, we propose M ulti-view coll A borative N etwork E mbedding (MANE), a multi-view network embedding approach to learn low-dimensional representations. Similar to existing studies, MANE hinges on diversity and collaboration—while diversity enables views to maintain their individual semantics, collaboration enables views to work together. However, we also discover a novel form of second-order collaboration that has not been explored previously, and further unify it into our framework to attain superior node representations. Furthermore, as each view often has varying importance w.r.t. different nodes, we propose MANE , an attention -based extension of MANE, to model node-wise view importance. Finally, we conduct comprehensive experiments on three public, real-world multi-view networks, and the results demonstrate that our models consistently outperform state-of-the-art approaches.

Author(s):  
Yiwei Sun ◽  
Suhang Wang ◽  
Tsung-Yu Hsieh ◽  
Xianfeng Tang ◽  
Vasant Honavar

Data from many real-world applications can be naturally represented by multi-view networks where the different views encode different types of relationships (e.g., friendship, shared interests in music, etc.) between real-world individuals or entities. There is an urgent need for methods to obtain low-dimensional, information preserving and typically nonlinear embeddings of such multi-view networks. However, most of the work on multi-view learning focuses on data that lack a network structure, and most of the work on network embeddings has focused primarily on single-view networks. Against this background, we consider the multi-view network representation learning problem, i.e., the problem of constructing low-dimensional information preserving embeddings of multi-view networks. Specifically, we investigate a novel Generative Adversarial Network (GAN) framework for Multi-View Network Embedding, namely MEGAN, aimed at preserving the information from the individual network views, while accounting for connectivity across (and hence complementarity of and correlations between) different views. The results of our experiments on two real-world multi-view data sets show that the embeddings obtained using MEGAN outperform the state-of-the-art methods on node classification, link prediction and visualization tasks.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weiwei Gu ◽  
Aditya Tandon ◽  
Yong-Yeol Ahn ◽  
Filippo Radicchi

AbstractNetwork embedding is a general-purpose machine learning technique that encodes network structure in vector spaces with tunable dimension. Choosing an appropriate embedding dimension – small enough to be efficient and large enough to be effective – is challenging but necessary to generate embeddings applicable to a multitude of tasks. Existing strategies for the selection of the embedding dimension rely on performance maximization in downstream tasks. Here, we propose a principled method such that all structural information of a network is parsimoniously encoded. The method is validated on various embedding algorithms and a large corpus of real-world networks. The embedding dimension selected by our method in real-world networks suggest that efficient encoding in low-dimensional spaces is usually possible.


Author(s):  
Yuanfu Lu ◽  
Chuan Shi ◽  
Linmei Hu ◽  
Zhiyuan Liu

Heterogeneous information network (HIN) embedding aims to embed multiple types of nodes into a low-dimensional space. Although most existing HIN embedding methods consider heterogeneous relations in HINs, they usually employ one single model for all relations without distinction, which inevitably restricts the capability of network embedding. In this paper, we take the structural characteristics of heterogeneous relations into consideration and propose a novel Relation structure-aware Heterogeneous Information Network Embedding model (RHINE). By exploring the real-world networks with thorough mathematical analysis, we present two structure-related measures which can consistently distinguish heterogeneous relations into two categories: Affiliation Relations (ARs) and Interaction Relations (IRs). To respect the distinctive characteristics of relations, in our RHINE, we propose different models specifically tailored to handle ARs and IRs, which can better capture the structures and semantics of the networks. At last, we combine and optimize these models in a unified and elegant manner. Extensive experiments on three real-world datasets demonstrate that our model significantly outperforms the state-of-the-art methods in various tasks, including node clustering, link prediction, and node classification.


Author(s):  
Jie Wen ◽  
Zheng Zhang ◽  
Yong Xu ◽  
Bob Zhang ◽  
Lunke Fei ◽  
...  

Multi-view clustering aims to partition data collected from diverse sources based on the assumption that all views are complete. However, such prior assumption is hardly satisfied in many real-world applications, resulting in the incomplete multi-view learning problem. The existing attempts on this problem still have the following limitations: 1) the underlying semantic information of the missing views is commonly ignored; 2) The local structure of data is not well explored; 3) The importance of different views is not effectively evaluated. To address these issues, this paper proposes a Unified Embedding Alignment Framework (UEAF) for robust incomplete multi-view clustering. In particular, a locality-preserved reconstruction term is introduced to infer the missing views such that all views can be naturally aligned. A consensus graph is adaptively learned and embedded via the reverse graph regularization to guarantee the common local structure of multiple views and in turn can further align the incomplete views and inferred views. Moreover, an adaptive weighting strategy is designed to capture the importance of different views. Extensive experimental results show that the proposed method can significantly improve the clustering performance in comparison with some state-of-the-art methods.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yongkai Ye ◽  
Xinwang Liu ◽  
Qiang Liu ◽  
Jianping Yin

Multiview clustering aims to improve clustering performance through optimal integration of information from multiple views. Though demonstrating promising performance in various applications, existing multiview clustering algorithms cannot effectively handle the view’s incompleteness. Recently, one pioneering work was proposed that handled this issue by integrating multiview clustering and imputation into a unified learning framework. While its framework is elegant, we observe that it overlooks the consistency between views, which leads to a reduction in the clustering performance. In order to address this issue, we propose a new unified learning method for incomplete multiview clustering, which simultaneously imputes the incomplete views and learns a consistent clustering result with explicit modeling of between-view consistency. More specifically, the similarity between each view’s clustering result and the consistent clustering result is measured. The consistency between views is then modeled using the sum of these similarities. Incomplete views are imputed to achieve an optimal clustering result in each view, while maintaining between-view consistency. Extensive comparisons with state-of-the-art methods on both synthetic and real-world incomplete multiview datasets validate the superiority of the proposed method.


2021 ◽  
Vol 11 (5) ◽  
pp. 2371
Author(s):  
Junjian Zhan ◽  
Feng Li ◽  
Yang Wang ◽  
Daoyu Lin ◽  
Guangluan Xu

As most networks come with some content in each node, attributed network embedding has aroused much research interest. Most existing attributed network embedding methods aim at learning a fixed representation for each node encoding its local proximity. However, those methods usually neglect the global information between nodes distant from each other and distribution of the latent codes. We propose Structural Adversarial Variational Graph Auto-Encoder (SAVGAE), a novel framework which encodes the network structure and node content into low-dimensional embeddings. On one hand, our model captures the local proximity and proximities at any distance of a network by exploiting a high-order proximity indicator named Rooted Pagerank. On the other hand, our method learns the data distribution of each node representation while circumvents the side effect its sampling process causes on learning a robust embedding through adversarial training. On benchmark datasets, we demonstrate that our method performs competitively compared with state-of-the-art models.


Author(s):  
Ziyao Li ◽  
Liang Zhang ◽  
Guojie Song

Many successful methods have been proposed for learning low dimensional representations on large-scale networks, while almost all existing methods are designed in inseparable processes, learning embeddings for entire networks even when only a small proportion of nodes are of interest. This leads to great inconvenience, especially on super-large or dynamic networks, where these methods become almost impossible to implement. In this paper, we formalize the problem of separated matrix factorization, based on which we elaborate a novel objective function that preserves both local and global information. We further propose SepNE, a simple and flexible network embedding algorithm which independently learns representations for different subsets of nodes in separated processes. By implementing separability, our algorithm reduces the redundant efforts to embed irrelevant nodes, yielding scalability to super-large networks, automatic implementation in distributed learning and further adaptations. We demonstrate the effectiveness of this approach on several real-world networks with different scales and subjects. With comparable accuracy, our approach significantly outperforms state-of-the-art baselines in running times on large networks.


Author(s):  
Kaiqi Wang ◽  
Ke Chen ◽  
Kui Jia

This paper proposes a deep cascade network to generate 3D geometry of an object on a point cloud, consisting of a set of permutation-insensitive points. Such a surface representation is easy to learn from, but inhibits exploiting rich low-dimensional topological manifolds of the object shape due to lack of geometric connectivity. For benefiting from its simple structure yet utilizing rich neighborhood information across points, this paper proposes a two-stage cascade model on point sets. Specifically, our method adopts the state-of-the-art point set autoencoder to generate a sparsely coarse shape first, and then locally refines it by encoding neighborhood connectivity on a graph representation. An ensemble of sparse refined surface is designed to alleviate the suffering from local minima caused by modeling complex geometric manifolds. Moreover, our model develops a dynamically-weighted loss function for jointly penalizing the generation output of cascade levels at different training stages in a coarse-to-fine manner. Comparative evaluation on the publicly benchmarking ShapeNet dataset demonstrates superior performance of the proposed model to the state-of-the-art methods on both single-view shape reconstruction and shape autoencoding applications.


Author(s):  
Liang Yang ◽  
Yuanfang Guo ◽  
Di Jin ◽  
Huazhu Fu ◽  
Xiaochun Cao

Combinational  network embedding, which learns the node representation by exploring both  topological and non-topological information, becomes popular due to the fact that the two types of information are complementing each other.  Most of the existing methods either consider the  topological and non-topological  information being aligned or possess predetermined preferences during the embedding process.Unfortunately, previous methods  fail to either explicitly describe the correlations between topological and non-topological information or adaptively weight their impacts. To address the existing issues, three new assumptions are proposed to better describe the embedding space and its properties. With the proposed assumptions, nodes, communities and topics are mapped into one embedding space. A novel generative model is proposed to formulate the generation process of the network and content from the embeddings, with respect to the Bayesian framework. The proposed model automatically leans to the information which is more discriminative.The embedding result can be obtained by maximizing the posterior distribution by adopting the variational inference and reparameterization trick. Experimental results indicate that the proposed method gives superior performances compared to the state-of-the-art methods when a variety of real-world networks is analyzed.


Author(s):  
Shijie Zhang ◽  
Hongzhi Yin ◽  
Qinyong Wang ◽  
Tong Chen ◽  
Hongxu Chen ◽  
...  

On E-commerce platforms, understanding the relationships (e.g., substitute and complement) among products from user's explicit feedback, such as users' online transactions, is of great importance to boost extra sales. However, the significance of such relationships is usually neglected by existing recommender systems. In this paper, we propose a semisupervised deep embedding model, namely, Substitute Products Embedding Model (SPEM), which models the substitutable relationships between products by preserving the second-order proximity, negative first-order proximity and semantic similarity in a product co-purchasing graph based on user's purchasing behaviours. With SPEM, the learned representations of two substitutable products align closely in the latent embedding space. Extensive experiments on real-world datasets are conducted, and the results verify that our model outperforms state-of-the-art baselines.


Sign in / Sign up

Export Citation Format

Share Document