scholarly journals MEGAN: A Generative Adversarial Network for Multi-View Network Embedding

Author(s):  
Yiwei Sun ◽  
Suhang Wang ◽  
Tsung-Yu Hsieh ◽  
Xianfeng Tang ◽  
Vasant Honavar

Data from many real-world applications can be naturally represented by multi-view networks where the different views encode different types of relationships (e.g., friendship, shared interests in music, etc.) between real-world individuals or entities. There is an urgent need for methods to obtain low-dimensional, information preserving and typically nonlinear embeddings of such multi-view networks. However, most of the work on multi-view learning focuses on data that lack a network structure, and most of the work on network embeddings has focused primarily on single-view networks. Against this background, we consider the multi-view network representation learning problem, i.e., the problem of constructing low-dimensional information preserving embeddings of multi-view networks. Specifically, we investigate a novel Generative Adversarial Network (GAN) framework for Multi-View Network Embedding, namely MEGAN, aimed at preserving the information from the individual network views, while accounting for connectivity across (and hence complementarity of and correlations between) different views. The results of our experiments on two real-world multi-view data sets show that the embeddings obtained using MEGAN outperform the state-of-the-art methods on node classification, link prediction and visualization tasks.

2021 ◽  
Vol 15 (3) ◽  
pp. 1-18
Author(s):  
Sezin Kircali Ata ◽  
Yuan Fang ◽  
Min Wu ◽  
Jiaqi Shi ◽  
Chee Keong Kwoh ◽  
...  

Real-world networks often exist with multiple views, where each view describes one type of interaction among a common set of nodes. For example, on a video-sharing network, while two user nodes are linked, if they have common favorite videos in one view, then they can also be linked in another view if they share common subscribers. Unlike traditional single-view networks, multiple views maintain different semantics to complement each other. In this article, we propose M ulti-view coll A borative N etwork E mbedding (MANE), a multi-view network embedding approach to learn low-dimensional representations. Similar to existing studies, MANE hinges on diversity and collaboration—while diversity enables views to maintain their individual semantics, collaboration enables views to work together. However, we also discover a novel form of second-order collaboration that has not been explored previously, and further unify it into our framework to attain superior node representations. Furthermore, as each view often has varying importance w.r.t. different nodes, we propose MANE , an attention -based extension of MANE, to model node-wise view importance. Finally, we conduct comprehensive experiments on three public, real-world multi-view networks, and the results demonstrate that our models consistently outperform state-of-the-art approaches.


Author(s):  
Tao Zhang ◽  
Long Yu ◽  
Shengwei Tian

In this paper, we presents an apporch for real-world human face close-up images cartoonization. We use generative adversarial network combined with an attention mechanism to convert real-world face pictures and cartoon-style images as unpaired data sets. At present, the image-to-image translation model has been able to successfully transfer style and content. However, some problems still exist in the task of cartoonizing human faces:Hunman face has many details, and the content of the image is easy to lose details after the image is translated. the quality of the image generated by the model is defective. The model in this paper uses the generative adversarial network combined with the attention mechanism, and proposes a new generative adversarial network combined with the attention mechanism to deal with these problems. The channel attention mechanism is embedded between the upper and lower sampling layers of the generator network, to avoid increasing the complexity of the model while conveying the complete details of the underlying information. After comparing the experimental results of FID, PSNR, MSE three indicators and the size of the model parameters, the new model network proposed in this paper avoids the complexity of the model while achieving a good balance in the conversion task of style and content.


Author(s):  
Sirajul Salekin ◽  
Milad Mostavi ◽  
Yu-Chiao Chiu ◽  
Yidong Chen ◽  
Jianqiu (Michelle) Zhang ◽  
...  

ABSTRACTEpitranscriptome is an exciting area that studies different types of modifications in transcripts and the prediction of such modification sites from the transcript sequence is of significant interest. However, the scarcity of positive sites for most modifications imposes critical challenges for training robust algorithms. To circumvent this problem, we propose MR-GAN, a generative adversarial network (GAN) based model, which is trained in an unsupervised fashion on the entire pre-mRNA sequences to learn a low dimensional embedding of transcriptomic sequences. MR-GAN was then applied to extract embeddings of the sequences in a training dataset we created for eight epitranscriptome modifications, including m6A, m1A, m1G, m2G, m5C, m5U, 2′-O-Me, Pseudouridine (Ψ) and Dihydrouridine (D), of which the positive samples are very limited. Prediction models were trained based on the embeddings extracted by MR-GAN. We compared the prediction performance with the one-hot encoding of the training sequences and SRAMP, a state-of-the-art m6A site prediction algorithm and demonstrated that the learned embeddings outperform one-hot encoding by a significant margin for up to 15% improvement. Using MR-GAN, we also investigated the sequence motifs for each modification type and uncovered known motifs as well as new motifs not possible with sequences directly. The results demonstrated that transcriptome features extracted using unsupervised learning could lead to high precision for predicting multiple types of epitranscriptome modifications, even when the data size is small and extremely imbalanced.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weiwei Gu ◽  
Aditya Tandon ◽  
Yong-Yeol Ahn ◽  
Filippo Radicchi

AbstractNetwork embedding is a general-purpose machine learning technique that encodes network structure in vector spaces with tunable dimension. Choosing an appropriate embedding dimension – small enough to be efficient and large enough to be effective – is challenging but necessary to generate embeddings applicable to a multitude of tasks. Existing strategies for the selection of the embedding dimension rely on performance maximization in downstream tasks. Here, we propose a principled method such that all structural information of a network is parsimoniously encoded. The method is validated on various embedding algorithms and a large corpus of real-world networks. The embedding dimension selected by our method in real-world networks suggest that efficient encoding in low-dimensional spaces is usually possible.


Author(s):  
Kalpesh Prajapati ◽  
Vishal Chudasama ◽  
Heena Patel ◽  
Kishor Upla ◽  
Kiran Raja ◽  
...  

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 245
Author(s):  
Konstantinos G. Liakos ◽  
Georgios K. Georgakilas ◽  
Fotis C. Plessas ◽  
Paris Kitsos

A significant problem in the field of hardware security consists of hardware trojan (HT) viruses. The insertion of HTs into a circuit can be applied for each phase of the circuit chain of production. HTs degrade the infected circuit, destroy it or leak encrypted data. Nowadays, efforts are being made to address HTs through machine learning (ML) techniques, mainly for the gate-level netlist (GLN) phase, but there are some restrictions. Specifically, the number and variety of normal and infected circuits that exist through the free public libraries, such as Trust-HUB, are based on the few samples of benchmarks that have been created from circuits large in size. Thus, it is difficult, based on these data, to develop robust ML-based models against HTs. In this paper, we propose a new deep learning (DL) tool named Generative Artificial Intelligence Netlists SynthesIS (GAINESIS). GAINESIS is based on the Wasserstein Conditional Generative Adversarial Network (WCGAN) algorithm and area–power analysis features from the GLN phase and synthesizes new normal and infected circuit samples for this phase. Based on our GAINESIS tool, we synthesized new data sets, different in size, and developed and compared seven ML classifiers. The results demonstrate that our new generated data sets significantly enhance the performance of ML classifiers compared with the initial data set of Trust-HUB.


Author(s):  
A.V. Prosvetov

Widely used recommendation systems do not meet all industry requirements, so the search for more advanced methods for creating recommendations continues. The proposed new methods based on Generative Adversarial Networks (GAN) have a theoretical comparison with other recommendation algorithms; however, real-world comparisons are needed to introduce new methods in the industry. In our work, we compare recommendations from the Generative Adversarial Network with recommendation from the Deep Semantic Similarity Model (DSSM) on real-world case of airflight tickets. We found a way to train the GAN so that users receive appropriate recommendations, and during A/B testing, we noted that the GAN-based recommendation system can successfully compete with other neural networks in generating recommendations. One of the advantages of the proposed approach is that the GAN training process avoids a negative sampling, which causes a number of distortions in the final ratings of recommendations. Due to the ability of the GAN to generate new objects from the distribution of the training set, we assume that the Conditional GAN is able to solve the cold start problem.


Author(s):  
Liang Yang ◽  
Yuexue Wang ◽  
Junhua Gu ◽  
Chuan Wang ◽  
Xiaochun Cao ◽  
...  

Motivated by the capability of Generative Adversarial Network on exploring the latent semantic space and capturing semantic variations in the data distribution, adversarial learning has been adopted in network embedding to improve the robustness. However, this important ability is lost in existing adversarially regularized network embedding methods, because their embedding results are directly compared to the samples drawn from perturbation (Gaussian) distribution without any rectification from real data. To overcome this vital issue, a novel Joint Adversarial Network Embedding (JANE) framework is proposed to jointly distinguish the real and fake combinations of the embeddings, topology information and node features. JANE contains three pluggable components, Embedding module, Generator module and Discriminator module. The overall objective function of JANE is defined in a min-max form, which can be optimized via alternating stochastic gradient. Extensive experiments demonstrate the remarkable superiority of the proposed JANE on link prediction (3% gains in both AUC and AP) and node clustering (5% gain in F1 score).


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4291
Author(s):  
Xuejiao Gong ◽  
Bo Tang ◽  
Ruijin Zhu ◽  
Wenlong Liao ◽  
Like Song

Due to the strong concealment of electricity theft and the limitation of inspection resources, the number of power theft samples mastered by the power department is insufficient, which limits the accuracy of power theft detection. Therefore, a data augmentation method for electricity theft detection based on the conditional variational auto-encoder (CVAE) is proposed. Firstly, the stealing power curves are mapped into low dimensional latent variables by using the encoder composed of convolutional layers, and the new stealing power curves are reconstructed by the decoder composed of deconvolutional layers. Then, five typical attack models are proposed, and the convolutional neural network is constructed as a classifier according to the data characteristics of stealing power curves. Finally, the effectiveness and adaptability of the proposed method is verified by a smart meters’ data set from London. The simulation results show that the CVAE can take into account the shapes and distribution characteristics of samples at the same time, and the generated stealing power curves have the best effect on the performance improvement of the classifier than the traditional augmentation methods such as the random oversampling method, synthetic minority over-sampling technique, and conditional generative adversarial network. Moreover, it is suitable for different classifiers.


Author(s):  
Fenxiao Chen ◽  
Yun-Cheng Wang ◽  
Bin Wang ◽  
C.-C. Jay Kuo

Abstract Research on graph representation learning has received great attention in recent years since most data in real-world applications come in the form of graphs. High-dimensional graph data are often in irregular forms. They are more difficult to analyze than image/video/audio data defined on regular lattices. Various graph embedding techniques have been developed to convert the raw graph data into a low-dimensional vector representation while preserving the intrinsic graph properties. In this review, we first explain the graph embedding task and its challenges. Next, we review a wide range of graph embedding techniques with insights. Then, we evaluate several stat-of-the-art methods against small and large data sets and compare their performance. Finally, potential applications and future directions are presented.


Sign in / Sign up

Export Citation Format

Share Document