SILVerIn: Systematic Integrity Verification of Printed Circuit Board Using JTAG Infrastructure

2021 ◽  
Vol 17 (3) ◽  
pp. 1-28
Author(s):  
Shubhra Deb Paul ◽  
Swarup Bhunia

A printed circuit board (PCB) provides necessary mechanical support to an electronic system and acts as a platform for connecting electronic components. Counterfeiting and in-field tampering of PCBs have become significant security concerns in the semiconductor industry as a result of increasing untrusted entities in the supply chain. These counterfeit components may result in performance degradation, profit reduction, and reputation risk for the manufacturers. While Integrated Circuit (IC) level authentication using physical unclonable functions (PUFs) has been widely investigated, countermeasures at the PCB level are scarce. These approaches either suffer from significant overhead issues, or opportunistic counterfeiters can breach them like clockwork. Besides, they cannot be extended to system-level (both chip and PCB together), and their applications are also limited to a specific purpose (i.e., either counterfeiting or tampering). In this article, we introduce SILVerIn , a novel systematic approach to verify the authenticity of all chips used in a PCB as well as the board for combating attacks such as counterfeiting, cloning, and in-field malicious modifications. We develop this approach by utilizing the existing boundary scan architecture (BSA) of modern ICs and PCBs. As a result, its implementation comes at a negligible (∼0.5%) hardware overhead. SILVerIn  is integrated into a PCB design during the manufacturing phase. We implement our technique on a custom hardware platform consisting of an FPGA and a microcontroller. We incorporate the industry-standard JTAG (Joint Test Action Group) interface to transmit test data into the BSA and perform hands-on measurement of supply current at both chip and PCB levels on 20 boards. We reconstruct these current values to digital signatures that exhibit high uniqueness, robustness, and randomness features. Our approach manifests strong reproducibility of signatures at different supply voltage levels, even with a low-resolution measurement setup. SILVerIn  also demonstrates a high resilience against machine learning-based modeling attacks, with an average prediction accuracy of ∼51%. Finally, we conduct intentional alteration experiments by replacing the on-board FPGA to replicate the scenario of PCB tampering, and the results indicate successful detection of in-field modifications in a PCB.

Author(s):  
William Ng ◽  
Kevin Weaver ◽  
Zachary Gemmill ◽  
Herve Deslandes ◽  
Rudolf Schlangen

Abstract This paper demonstrates the use of a real time lock-in thermography (LIT) system to non-destructively characterize thermal events prior to the failing of an integrated circuit (IC) device. A case study using a packaged IC mounted on printed circuit board (PCB) is presented. The result validated the failing model by observing the thermal signature on the package. Subsequent analysis from the backside of the IC identified a hot spot in internal circuitry sensitive to varying value of external discrete component (inductor) on PCB.


2021 ◽  
Author(s):  
Jiheong Kang ◽  
Wonbeom Lee ◽  
Hyunjun Kim ◽  
Inho Kang ◽  
Hongjun Park ◽  
...  

Abstract Stretchable electronics are considered next-generation electronic devices in a broad range of emerging fields, including soft robotics1,2, biomedical devices3,4, human-machine interfaces5,6, and virtual or augmented reality devices7,8. A stretchable printed circuit board (S-PCB) is a basic conductive framework for the facile assembly of system-level stretchable electronics with various electronic components. Since an S-PCB is responsible for electrical communications between numerous electronic components, the conductive lines in S-PCB should strictly satisfy the following features: (i) metallic conductivity, (ii) constant electrical resistance during dynamic stretching, and (iii) tough interface bonding with various components9. Despite recent significant advances in intrinsically stretchable conductors10,11,12, they cannot simultaneously satisfy the above stringent requirements. Here, we present a new concept of conductive liquid network-based elastic conductors. These conductors are based on unprecedented liquid metal particles assembled network (LMPNet) and an elastomer. The unique assembled network structure and reconfigurable nature of the LMPNet conductor enabled high conductivity, high stretchability, tough adhesion, and imperceptible resistance changes under large strains, which enabled the first elastic-PCB (E-PCB) technology. We synthesized LMPNet through an acoustic field-driven cavitation event in the solid state. When an acoustic field is applied, liquid metal nanoparticles (LMPnano) are remarkably generated from original LMPs and assemble into a highly conductive particle network (LMPNet). Finally, we demonstrated a multi-layered E-PCB, in which various electronic components were integrated with tough adhesion to form a highly stretchable health monitoring system. Since our synthesis of LMPNet is universal, we could synthesize LMPNet in various polymers, including hydrogel, self-healing elastomer and photoresist and add new functions to LMPNet.


Proceedings ◽  
2019 ◽  
Vol 27 (1) ◽  
pp. 19
Author(s):  
Bushra Jalil ◽  
Bilal Hussain ◽  
Maria Pascali ◽  
Giovanni Serafino ◽  
Davide Moroni ◽  
...  

Microwave photonic systems are more susceptible to thermal fluctuations due to thermo-optic effect. In order to stabilize the performance of photonic components, thermal monitoring is achieved by using thermistors placed at any arbitrary location along the component. This work presents non contact thermography of a fully functional microwave photonic system. The temperature profile of printed circuit board (PCB) and photonic integrated circuit (PIC) is obtained using Fluke FLIR (A65) camera. We performed Otsu’s thresholding to segment heat centers located across PCB as well as PIC. The infrared and visible cameras used in this work have different field of view, therefore, after applying morphological methods, we performed image registration to synchronize both visible and thermal images. We demonstrate this method on the circuit board with active electrical/photonic elements and were able to observe thermal profile of these components.


Author(s):  
Sharon A. Myers ◽  
Troy D. Cognata ◽  
Hugh Gotts

Logic boards were failing at Enhanced Mac Minus One (EMMO) test or Integrated Circuit Test (ICT) after printed circuit board (PCB) rework. The failure to boot was originally traced to a suspected bad microcontroller chip. Replacing this chip, or an oscillator tied to the microcontroller circuit, did not consistently solve the boot problem. With further testing, it was found the microcontroller circuit was very sensitive to resistance and was essentially shorted.A resistor in the microcontroller circuit was identified on the flip side of the PCB. Several areas on the board, including the resistor R161, were seen to have a slight white haze/ low gloss appearance on the surface of the PCB. To test if the residue was electrically conductive, five boards were selected whose sole failure was R161. The resistance of the individual resistors was measured with a digital multimeter (DMM). The resistor was then cleaned with isopropyl alcohol and a cotton swab. Each board was retested at ICT and the individual resistors measured again with a DMM. Cleaning the area surrounding the resistor with isopropyl alcohol, corrected the failure four of the times.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000887-000892 ◽  
Author(s):  
Rudi Hechfellner ◽  
Michiel Kruger ◽  
Tewe Heemstra ◽  
Greg Caswell ◽  
Nathan Blattau ◽  
...  

Light Emitting Diodes (LEDs) are quickly evolving as the dominant lighting solution for a wide variety of applications. With the elimination of incandescent light bulbs and the toxic limitations of fluorescent bulbs, there has been a dramatic increase in the interest in high-brightness light emitting diodes (HB-LEDs). Getting the light out of the die, with reliable color, while maintaining appropriate thermal control over a long service life is a challenge. These issues must be understood and achieved to meet the needs of unique applications, such as solidstate-lighting, automotive, signage, and medical applications. These applications have requirements for 15–25 years of operation making their reliability of critical importance. The LUXEON Rebel has been accepted as an industry leading LED product, widely used in Mean-Time-Between-Failure (MTBF) sensitive applications. Customers use various mounting platforms, such as FR4 Printed Circuit Board (PCB), FR4 PCB with thermal via's, Aluminum & Copper Metal Core printed Circuit Boards (MCPCB), Super MCPCB, etc. As in other LEDs, when mounting to a platform where a large Coefficient of Thermal Expansion (CTE) exists between the LED & the PCB, Solder fatigue could become an issue that may affect system level lifetime. In this paper we have examined extreme cases and how a solder joint can impact system level reliability. We have modeled the conditions and formed a means to predict system level reliability. We have compared the prediction modeling with empirical tests for validation of the models. It is vital to understand system level reliability factors to build lighting solutions that match the application and customer expectations. It is impractical to test LEDs and other components for 50k hours ~5 years since the device evolution is much faster than that – on average one LED generation every 12–18 month. Hence we need models and prediction methods …..


Author(s):  
M. Baris Dogruoz ◽  
Manoj K. Nagulapally

A printed circuit board (PCB) is generally a multilayered board made of dielectric material and several layers of traces and vias. Performing detailed system-level computational fluid dynamics (CFD) simulations of PCBs including meshed trace and via geometries for each of the layers is impractical. In the present approach, the effects of the trace and via geometry are accurately modeled in the physical model by importing electronics computer aided-design data consisting of the trace and via layout of the board and computing locally varying orthotropic conductivity (kx, ky, and kz) on the printed circuit board using a background mesh. The spatially varying orthotropic conductivity is then mapped from the background mesh to the CFD mesh and used in a system-level simulation of the PCB with a minimal increase in the overall computational cost. On the other hand, as PCB component densities increase, the current densities increase thereby leading to regions of hot spots due to Joule heating. Hence, it is essential that the computational heat transfer simulations account for the heating due to the high current carrying traces. In order to accurately model the Joule heating of traces and vias, it is of essence to solve for the conservation of current in each of these traces. In this study, the effects of both trace layer nonhomogeneity and Joule heating are examined on a sample PCB with several components attached to it. The results are then compared with those from the conventional modeling techniques. It is demonstrated that there is considerable difference in the location of the hot spots and temperature values between two different methods.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744008
Author(s):  
M. Meng ◽  
Z. B. Wang ◽  
X. Wang ◽  
Y. Chen

This paper analyzes two failure cases of creep-caused fracture of PbSn solder joint, including the joint between the wire and solder cup in the connector and the joint between the integrated circuit (IC) pins and the printed circuit board (PCB). The environment conditions, for the creep of PbSn solder joint is demonstrated, including the temperature and stress level. The stress origin and fracture morphology are summarized based on the failure analysis. Besides, the developing process of creep-caused fracture is explained. The paper comprehensively clarifies the creep mechanism of PbSn solder and consequently provides significant guidance for the reliable electronic assembly to avoid the creep-caused damage.


Sign in / Sign up

Export Citation Format

Share Document