Mover

Author(s):  
Wenjun Lyu ◽  
Guang Wang ◽  
Yu Yang ◽  
Desheng Zhang

Human mobility models typically produce mobility data to capture human mobility patterns individually or collectively based on real-world observations or assumptions, which are essential for many use cases in research and practice, e.g., mobile networking, autonomous driving, urban planning, and epidemic control. However, most existing mobility models suffer from practical issues like unknown accuracy and uncertain parameters in new use cases because they are normally designed and verified based on a particular use case (e.g., mobile phones, taxis, or mobile payments). This causes significant challenges for researchers when they try to select a representative human mobility model with appropriate parameters for new use cases. In this paper, we introduce a MObility VERification framework called MOVER to systematically measure the performance of a set of representative mobility models including both theoretical and empirical models based on a diverse set of use cases with various measures. Based on a taxonomy built upon spatial granularity and temporal continuity, we selected four representative mobility use cases (e.g., the vehicle tracking system, the camera-based system, the mobile payment system, and the cellular network system) to verify the generalizability of the state-of-the-art human mobility models. MOVER methodically characterizes the accuracy of five different mobility models in these four use cases based on a comprehensive set of mobility measures and provide two key lessons learned: (i) For the collective level measures, the finer spatial granularity of the user cases, the better generalization of the theoretical models; (ii) For the individual-level measures, the lower periodic temporal continuity of the user cases, the theoretical models typically generalize better than the empirical models. The verification results can help the research community to select appropriate mobility models and parameters in different use cases.

Author(s):  
Miguel Ribeiro ◽  
Nuno Nunes ◽  
Valentina Nisi ◽  
Johannes Schöning

Abstract In this paper, we present a systematic analysis of large-scale human mobility patterns obtained from a passive Wi-Fi tracking system, deployed across different location typologies. We have deployed a system to cover urban areas served by public transportation systems as well as very isolated and rural areas. Over 4 years, we collected 572 million data points from a total of 82 routers covering an area of 2.8 km2. In this paper we provide a systematic analysis of the data and discuss how our low-cost approach can be used to help communities and policymakers to make decisions to improve people’s mobility at high temporal and spatial resolution by inferring presence characteristics against several sources of ground truth. Also, we present an automatic classification technique that can identify location types based on collected data.


Author(s):  
Ali Diab ◽  
Andreas Mitschele-Thiel

It is well accepted that the physical world itself, including communication networks, humans, and objects, is becoming a type of information system. Thus, to improve the experience of individuals, communities, organizations, and societies within such systems, a thorough comprehension of collective intelligence processes responsible for generating, handling, and controlling data is fundamental. One of the major aspects in this context and also the focus of this chapter is the development of novel methods to model human mobility patterns, which have myriad uses in crucial fields (e.g. mobile communication, urban planning, etc.). The chapter highlights the state of the art and provides a comprehensive investigation of current research efforts in this field. It classifies mobility models into synthetic, trace-based, and community-based models, and also provides insight into each category. That is, well-known approaches are presented, discussed, and qualitatively compared with each other.


2021 ◽  
Vol 13 (24) ◽  
pp. 13921
Author(s):  
Laiyun Wu ◽  
Samiul Hasan ◽  
Younshik Chung ◽  
Jee Eun Kang

Characterizing individual mobility is critical to understand urban dynamics and to develop high-resolution mobility models. Previously, large-scale trajectory datasets have been used to characterize universal mobility patterns. However, due to the limitations of the underlying datasets, these studies could not investigate how mobility patterns differ over user characteristics among demographic groups. In this study, we analyzed a large-scale Automatic Fare Collection (AFC) dataset of the transit system of Seoul, South Korea and investigated how mobility patterns vary over user characteristics and modal preferences. We identified users’ commuting locations and estimated the statistical distributions required to characterize their spatio-temporal mobility patterns. Our findings show the heterogeneity of mobility patterns across demographic user groups. This result will significantly impact future mobility models based on trajectory datasets.


10.29007/nnfj ◽  
2019 ◽  
Author(s):  
Stefan Schuhbäck ◽  
Nico Daßler ◽  
Lars Wischhof ◽  
Gerta Köster

In order to accurately evaluate new concepts and protocols for mobile communication networks, realistic mobility models are needed. Furthermore, for use cases which have a bidirectional dependency between communication and mobility, changes in communication lead to changes in mobility and vice versa, thus requiring an online coupling between models. Therefore, bidirectional coupling to incorporate realistic mobility patterns is state of the art in the analysis of Vehicular Ad-Hoc Network (VANET) applications.However, the same need exist for use cases where the mobile users are pedestrians rather than vehicles. Therefore, this paper introduces our current, on-going work on connecting OMNeT++ and Vadere, an open source simulation framework for microscopic pedestrian dynamics, to benefit from state of the art pedestrian mobility models in mobile communication use cases. The presented coupling is based on the existing Traffic Control Interface (TraCI) protocol used in the Veins (Vehicles in Network Simulation) framework to connect OMNeT++ with SUMO.


2021 ◽  
Vol 13 (4) ◽  
pp. 2178
Author(s):  
Songkorn Siangsuebchart ◽  
Sarawut Ninsawat ◽  
Apichon Witayangkurn ◽  
Surachet Pravinvongvuth

Bangkok, the capital city of Thailand, is one of the most developed and expansive cities. Due to the ongoing development and expansion of Bangkok, urbanization has continued to expand into adjacent provinces, creating the Bangkok Metropolitan Region (BMR). Continuous monitoring of human mobility in BMR aids in public transport planning and design, and efficient performance assessment. The purpose of this study is to design and develop a process to derive human mobility patterns from the real movement of people who use both fixed-route and non-fixed-route public transport modes, including taxis, vans, and electric rail. Taxi GPS open data were collected by the Intelligent Traffic Information Center Foundation (iTIC) from all GPS-equipped taxis of one operator in BMR. GPS probe data of all operating GPS-equipped vans were collected by the Ministry of Transport’s Department of Land Transport for daily speed and driving behavior monitoring. Finally, the ridership data of all electric rail lines were collected from smartcards by the Automated Fare Collection (AFC). None of the previous works on human mobility extraction from multi-sourced big data have used van data; therefore, it is a challenge to use this data with other sources in the study of human mobility. Each public transport mode has traveling characteristics unique to its passengers and, therefore, specific analytical tools. Firstly, the taxi trip extraction process was developed using Hadoop Hive to process a large quantity of data spanning a one-month period to derive the origin and destination (OD) of each trip. Secondly, for van data, a Java program was used to construct the ODs of van trips. Thirdly, another Java program was used to create the ODs of the electric rail lines. All OD locations of these three modes were aggregated into transportation analysis zones (TAZ). The major taxi trip destinations were found to be international airports and provincial bus terminals. The significant trip destinations of vans were provincial bus terminals in Bangkok, electric rail stations, and the industrial estates in other provinces of BMR. In contrast, electric rail destinations were electric rail line interchange stations, the central business district (CBD), and commercial office areas. Therefore, these significant destinations of taxis and vans should be considered in electric rail planning to reduce the air pollution from gasoline vehicles (taxis and vans). Using the designed procedures, the up-to-date dataset of public transport can be processed to derive a time series of human mobility as an input into continuous and sustainable public transport planning and performance assessment. Based on the results of the study, the procedures can benefit other cities in Thailand and other countries.


Telecom ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 1-26
Author(s):  
Athanasios Kanavos ◽  
Dimitrios Fragkos ◽  
Alexandros Kaloxylos

Vehicular communications is expected to be one of the key applications for cellular networks during the following decades. Key international organizations have already described in detail a number of related use cases, along with their requirements. This article provides a comprehensive analysis of these use cases and a harmonized view of the requirements for the latest and most advanced autonomous driving applications. It also investigates the extent of support that 4G and 5G networks can offer to these use cases in terms of delay and spectrum needs. The paper identifies open issues and discusses trends and potential solutions.


2021 ◽  
Vol 94 ◽  
pp. 103117
Author(s):  
Rongxiang Su ◽  
Jingyi Xiao ◽  
Elizabeth C. McBride ◽  
Konstadinos G. Goulias

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3783
Author(s):  
Sumbal Malik ◽  
Manzoor Ahmed Khan ◽  
Hesham El-Sayed

Sooner than expected, roads will be populated with a plethora of connected and autonomous vehicles serving diverse mobility needs. Rather than being stand-alone, vehicles will be required to cooperate and coordinate with each other, referred to as cooperative driving executing the mobility tasks properly. Cooperative driving leverages Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication technologies aiming to carry out cooperative functionalities: (i) cooperative sensing and (ii) cooperative maneuvering. To better equip the readers with background knowledge on the topic, we firstly provide the detailed taxonomy section describing the underlying concepts and various aspects of cooperation in cooperative driving. In this survey, we review the current solution approaches in cooperation for autonomous vehicles, based on various cooperative driving applications, i.e., smart car parking, lane change and merge, intersection management, and platooning. The role and functionality of such cooperation become more crucial in platooning use-cases, which is why we also focus on providing more details of platooning use-cases and focus on one of the challenges, electing a leader in high-level platooning. Following, we highlight a crucial range of research gaps and open challenges that need to be addressed before cooperative autonomous vehicles hit the roads. We believe that this survey will assist the researchers in better understanding vehicular cooperation, its various scenarios, solution approaches, and challenges.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexandru Topîrceanu ◽  
Radu-Emil Precup

AbstractComputational models for large, resurgent epidemics are recognized as a crucial tool for predicting the spread of infectious diseases. It is widely agreed, that such models can be augmented with realistic multiscale population models and by incorporating human mobility patterns. Nevertheless, a large proportion of recent studies, aimed at better understanding global epidemics, like influenza, measles, H1N1, SARS, and COVID-19, underestimate the role of heterogeneous mixing in populations, characterized by strong social structures and geography. Motivated by the reduced tractability of studies employing homogeneous mixing, which make conclusions hard to deduce, we propose a new, very fine-grained model incorporating the spatial distribution of population into geographical settlements, with a hierarchical organization down to the level of households (inside which we assume homogeneous mixing). In addition, population is organized heterogeneously outside households, and we model the movement of individuals using travel distance and frequency parameters for inter- and intra-settlement movement. Discrete event simulation, employing an adapted SIR model with relapse, reproduces important qualitative characteristics of real epidemics, like high variation in size and temporal heterogeneity (e.g., waves), that are challenging to reproduce and to quantify with existing measures. Our results pinpoint an important aspect, that epidemic size is more sensitive to the increase in distance of travel, rather that the frequency of travel. Finally, we discuss implications for the control of epidemics by integrating human mobility restrictions, as well as progressive vaccination of individuals.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Enrique Hernández-Orallo ◽  
Antonio Armero-Martínez

One of the key factors for the spreading of human infections, such as the COVID-19, is human mobility. There is a huge background of human mobility models developed with the aim of evaluating the performance of mobile computer networks, such as cellular networks, opportunistic networks, etc. In this paper, we propose the use of these models for evaluating the temporal and spatial risk of transmission of the COVID-19 disease. First, we study both pure synthetic model and simulated models based on pedestrian simulators, generated for real urban scenarios such as a square and a subway station. In order to evaluate the risk, two different risks of exposure are defined. The results show that we can obtain not only the temporal risk but also a heat map with the exposure risk in the evaluated scenario. This is particularly interesting for public spaces, where health authorities could make effective risk management plans to reduce the risk of transmission.


Sign in / Sign up

Export Citation Format

Share Document