DNA Electrochemistry and Electrochemical Sensors for Nucleic Acids

2018 ◽  
Vol 11 (1) ◽  
pp. 197-218 ◽  
Author(s):  
Elena E. Ferapontova

Sensitive, specific, and fast analysis of nucleic acids (NAs) is strongly needed in medicine, environmental science, biodefence, and agriculture for the study of bacterial contamination of food and beverages and genetically modified organisms. Electrochemistry offers accurate, simple, inexpensive, and robust tools for the development of such analytical platforms that can successfully compete with other approaches for NA detection. Here, electrode reactions of DNA, basic principles of electrochemical NA analysis, and their relevance for practical applications are reviewed and critically discussed.

2015 ◽  
Vol 51 (20) ◽  
pp. 4144-4160 ◽  
Author(s):  
Ron Orbach ◽  
Bilha Willner ◽  
Itamar Willner

Catalytic nucleic acids (DNAzymes) provide functional modules for logic gates and computing operations, and hold great promise for biomedical sensing and therapeutic applications.


Author(s):  
Robert Laumbach ◽  
Michael Gochfeld

This chapter describes the basic principles of toxicology and their application to occupational and environmental health. Topics covered include pathways that toxic substances may take from sources in the environment to molecular targets in the cells of the body where toxic effects occur. These pathways include routes of exposure, absorption into the body, distribution to organs and tissues, metabolism, storage, and excretion. The various types of toxicological endpoints are discussed, along with the concepts of dose-response relationships, threshold doses, and the basis of interindividual differences and interspecies differences in response to exposure to toxic substances. The diversity of cellular and molecular mechanisms of toxicity, including enzyme induction and inhibition, oxidative stress, mutagenesis, carcinogenesis, and teratogenesis, are discussed and the chapter concludes with examples of practical applications in clinical evaluation and in toxicity testing.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4247 ◽  
Author(s):  
Rita Petrucci ◽  
Isabella Chiarotto ◽  
Leonardo Mattiello ◽  
Daniele Passeri ◽  
Marco Rossi ◽  
...  

Natural methylxanthines, caffeine, theophylline and theobromine, are widespread biologically active alkaloids in human nutrition, found mainly in beverages (coffee, tea, cocoa, energy drinks, etc.). Their detection is thus of extreme importance, and many studies are devoted to this topic. During the last decade, graphene oxide (GO) and reduced graphene oxide (RGO) gained popularity as constituents of sensors (chemical, electrochemical and biosensors) for methylxanthines. The main advantages of GO and RGO with respect to graphene are the easiness and cheapness of synthesis, the notable higher solubility in polar solvents (water, among others), and the higher reactivity towards these targets (mainly due to – interactions); one of the main disadvantages is the lower electrical conductivity, especially when using them in electrochemical sensors. Nonetheless, their use in sensors is becoming more and more common, with the obtainment of very good results in terms of selectivity and sensitivity (up to 5.4 × 10−10 mol L−1 and 1.8 × 10−9 mol L−1 for caffeine and theophylline, respectively). Moreover, the ability of GO to protect DNA and RNA from enzymatic digestion renders it one of the best candidates for biosensors based on these nucleic acids. This is an up-to-date review of the use of GO and RGO in sensors.


2016 ◽  
Vol 88 (15) ◽  
pp. 7583-7590 ◽  
Author(s):  
Chao Li ◽  
Dan Wu ◽  
Xiaolu Hu ◽  
Yang Xiang ◽  
Yongqian Shu ◽  
...  

2007 ◽  
Vol 90 (2) ◽  
pp. 582-586 ◽  
Author(s):  
Jana Žel ◽  
Kristina Gruden ◽  
Katarina Cankar ◽  
Dejan tebih ◽  
Andrej Blejec

Abstract Quantitative characterization of nucleic acids is becoming a frequently used method in routine analysis of biological samples, one use being the detection of genetically modified organisms (GMOs). Measurement uncertainty is an important factor to be considered in these analyses, especially where precise thresholds are set in regulations. Intermediate precision, defined as a measure between repeatability and reproducibility, is a parameter describing the real situation in laboratories dealing with quantitative aspects of molecular biology methods. In this paper, we describe the top-down approach to calculating measurement uncertainty, using intermediate precision, in routine GMO testing of food and feed samples. We illustrate its practicability in defining compliance of results with regulations. The method described is also applicable to other molecular methods for a variety of laboratory diagnostics where quantitative characterization of nucleic acids is needed.


Several reasons have contributed to the prolonged neglect into which the study of statistics, in its theoretical aspects, has fallen. In spite of the immense amount of fruitful labour which has been expended in its practical applications, the basic principles of this organ of science are still in a state of obscurity, and it cannot be denied that, during the recent rapid development of practical methods, fundamental problems have been ignored and fundamental paradoxes left unresolved. This anomalous state of statistical science is strikingly exemplified by a recent paper entitled "The Fundamental Problem of Practical Statistics," in which one of the most eminent of modern statisticians presents what purports to be a general proof of BAYES' postulate, a proof which, in the opinion of a second statistician of equal eminence, "seems to rest upon a very peculiar -- not to say hardly supposable -- relation."


1993 ◽  
Vol 5 (10) ◽  
pp. 1217-1229 ◽  
Author(s):  
R B Goldberg ◽  
T P Beals ◽  
P M Sanders

Author(s):  
Chung-Tse Michael Wu ◽  
Pai-Yen Chen

In this chapter, we will review recent research advances on beamforming and spatial multiplexing techniques using reconfigurable metamaterials (MTMs) and metasurfaces. This chapter starts by discussing basic principles and practical applications of transmission line-based metamaterials and planar metasurfaces, followed by their active versions that enable novel smart antennas with beam steering and beamshaping functions. We include detailed descriptions of their practical realizations and the integration with circuits and the radio-frequency (RF) frontend, which are used to adaptively and dynamically manipulate electromagnetic radiation. We summarize the state-of-the-art MTM/metasurface-based beamforming techniques and provide a critical comparison for their uses in the RF-to-millimeter-wave range in terms of cost, reconfigurability, system integratability and radiation properties. These techniques are expected to pave the way for the massive deployment of communication, radar, remote sensing and medical and security imaging systems.


Catalysts ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 653 ◽  
Author(s):  
Chen ◽  
Chen ◽  
Hong

Herein, MoS2 nanoslices were simply prepared by using ultrasonic treatment, and were further decorated with Au nanoparticles (AuNPs) through an electrodeposition process to obtain the MoS2/Au nanocomposites. The obtained nanocomposites display synergetic electrocatalytic effect for the oxidation of dopamine due to the large surface area and two-dimensional structure of the MoS2 nanoslices, combining with the high catalytic activity and good conductivity of AuNPs. An electrochemical sensor was constructed based on MoS2/Au-modified carbon paste electrode, for sensitive and quantitative determination of dopamine. The prepared electrochemical sensor proves excellent analytical performances: very high sensitivity, wide linear ranges (0.5–300 μM), and low detection limit (76 nM). Moreover, the dopamine sensor also displays high selectivity, good reproducibility and stability, and can be used in real sample analysis. The method of fabricating high-efficiency electrocatalysts and electrochemical sensors proposed in this study provides a good reference for developing more functionalized nanocomposites and for extending practical applications.


Sign in / Sign up

Export Citation Format

Share Document