Recent Progress in Spermatology Contributing to the Knowledge and Conservation of Rare and Endangered Species

Author(s):  
Pierre Comizzoli ◽  
William V. Holt

There is a remarkable diversity in the animal kingdom regarding mechanisms underlying the production, maturation, structure, and function of sperm cells. Spermatology studies contribute to the knowledge of species diversity and also provide information about individual or population fitness. Furthermore, this fundamental research is required before collected spermatozoa can be used for conservation breeding, including assisted reproduction and cryobanking. This article aims to ( a) review the most recent knowledge on sperm morphology and function in wild animal species, ( b) analyze how this knowledge can be used to save species in their natural habitat or ex situ, and ( c) propose future scientific directions in wildlife spermatology that could positively impact animal conservation. Variations in sperm structure and performance within and between species have multiple origins and significance. This collective body of knowledge enables the design and implementation of conservation strategies and action plans that integrate several disciplines. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

2021 ◽  
Vol 72 (1) ◽  
Author(s):  
Ryan J. Emenecker ◽  
Alex S. Holehouse ◽  
Lucia C. Strader

A surge in research focused on understanding the physical principles governing the formation, properties, and function of membraneless compartments has occurred over the past decade. Compartments such as the nucleolus, stress granules, and nuclear speckles have been designated as biomolecular condensates to describe their shared property of spatially concentrating biomolecules. Although this research has historically been carried out in animal and fungal systems, recent work has begun to explore whether these same principles are relevant in plants. Effectively understanding and studying biomolecular condensates require interdisciplinary expertise that spans cell biology, biochemistry, and condensed matter physics and biophysics. As such, some involved concepts may be unfamiliar to any given individual. This review focuses on introducing concepts essential to the study of biomolecular condensates and phase separation for biologists seeking to carry out research in this area and further examines aspects of biomolecular condensates that are relevant to plant systems. Expected final online publication date for the Annual Review of Plant Biology, Volume 72 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Sihan Wu ◽  
Vineet Bafna ◽  
Howard Y. Chang ◽  
Paul S. Mischel

Human genes are arranged on 23 pairs of chromosomes, but in cancer, tumor-promoting genes and regulatory elements can free themselves from chromosomes and relocate to circular, extrachromosomal pieces of DNA (ecDNA). ecDNA, because of its nonchromosomal inheritance, drives high-copy-number oncogene amplification and enables tumors to evolve their genomes rapidly. Furthermore, the circular ecDNA architecture fundamentally alters gene regulation and transcription, and the higher-order organization of ecDNA contributes to tumor pathogenesis. Consequently, patients whose cancers harbor ecDNA have significantly shorter survival. Although ecDNA was first observed more than 50 years ago, its critical importance has only recently come to light. In this review, we discuss the current state of understanding of how ecDNAs form and function as well as how they contribute to drug resistance and accelerated cancer evolution. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Zachary Terner ◽  
Alexander Franks

In recent years, analytics has started to revolutionize the game of basketball: Quantitative analyses of the game inform team strategy; management of player health and fitness; and how teams draft, sign, and trade players. In this review, we focus on methods for quantifying and characterizing basketball gameplay. At the team level, we discuss methods for characterizing team strategy and performance, while at the player level, we take a deep look into a myriad of tools for player evaluation. This includes metrics for overall player value, defensive ability, and shot modeling, and methods for understanding performance over multiple seasons via player production curves. We conclude with a discussion on the future of basketball analytics and, in particular, highlight the need for causal inference in sports. Expected final online publication date for the Annual Review of Statistics, Volume 8 is March 8, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Craig M. Bielski ◽  
Barry S. Taylor

The search for somatic mutations that drive the initiation and progression of human tumors has dominated recent cancer research. While much emphasis has been placed on characterizing the prevalence and function of driver mutations, comparatively less is known about their serial genetic evolution. Indeed, study of this phenomenon has largely focused on tumor-suppressor genes recessive at the cellular level or mechanisms of resistance in tumors with mutant oncogenes targeted by therapy. There is, however, a growing appreciation that despite a decades-old presumption of heterozygosity, changes in mutant oncogene zygosity are common and drive dosage and stoichiometry changes that lead to selective growth advantages. Here, we review the recent progress in understanding mutant allele imbalance and its implications for tumor biology, cancer evolution, and response to anticancer therapy. Expected final online publication date for the Annual Review of Cancer Biology, Volume 5 is March 4, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Thomas R. Shaw ◽  
Subhadip Ghosh ◽  
Sarah L. Veatch

Lateral organization in the plane of the plasma membrane is an important driver of biological processes. The past dozen years have seen increasing experimental support for the notion that lipid organization plays an important role in modulating this heterogeneity. Various biophysical mechanisms rooted in the concept of liquid–liquid phase separation have been proposed to explain diverse experimental observations of heterogeneity in model and cell membranes with distinct but overlapping applicability. In this review, we focus on the evidence for and the consequences of the hypothesis that the plasma membrane is poised near an equilibrium miscibility critical point. Critical phenomena explain certain features of the heterogeneity observed in cells and model systems but also go beyond heterogeneity to predict other interesting phenomena, including responses to perturbations in membrane composition. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 72 is April 20, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2018 ◽  
Vol 75 (4) ◽  
pp. 338-347 ◽  
Author(s):  
N.A. Bisko ◽  
◽  
M.M. Sukhomlyn ◽  
O.B. Mykhaylova ◽  
M.L. Lomberg ◽  
...  

Author(s):  
Pierre Comizzoli ◽  
Mary Ann Ottinger

Similar to humans and laboratory animals, reproductive aging is observed in wild species-from small invertebrates to large mammals. Aging issues are also prevalent in rare and endangered species under human care as their life expectancy is longer than in the wild. The objectives of this review are to (1) present conserved as well as distinctive traits of reproductive aging in different wild animal species (2) highlight the value of comparative studies to address aging issues in conservation breeding as well as in human reproductive medicine, and (3) suggest next steps forward in that research area. From social insects to mega-vertebrates, reproductive aging studies as well as observations in the wild or in breeding centers often remain at the physiological or organismal scale (senescence) rather than at the germ cell level. Overall, multiple traits are conserved across very different species (depletion of the ovarian reserve or no decline in testicular functions), but unique features also exist (endless reproductive life or unaltered quality of germ cells). There is a broad consensus about the need to fill research gaps because many cellular and molecular processes during reproductive aging remain undescribed. More research in male aging is particularly needed across all species. Furthermore, studies on reproductive aging of target species in their natural habitat (sentinel species) are crucial to define more accurate reproductive indicators relevant to other species, including humans, sharing the same environment. Wild species can significantly contribute to our general knowledge of a crucial phenomenon and provide new approaches to extend the reproductive lifespan.


Author(s):  
Yumiko Okamoto ◽  
Natsumi Ichinohe ◽  
Cheolwoon Woo ◽  
Sung-Yong Han ◽  
Hyeong-Hoo Kim ◽  
...  

AbstractUnderstanding the gut microbiota characteristics of endangered species such as the Eurasian otter (Lutra lutra), especially in their early stages of life, could be essential for improving their management and ex situ conservation strategies. Here, we analyzed the gut microbiota diversity, composition, and function of captive Eurasian otters at different ages using high-throughput 16S rRNA gene sequencing. We found that: (1) Clostridiaceae was abundant in all age stages; (2) Lactococcus in cubs is thought to predominate for digesting milk; (3) bacteria associated with amino acid metabolism increase with age, while bacteria associated with carbohydrate metabolism decrease with age, which is likely due to decrease in dietary carbohydrate content (e.g., milk) and increase in dietary protein contents (e.g., fishes) with age; and (4) fish-related bacteria were detected in feces of healthy adults and juveniles. Overall, the gut microbiota of captive Eurasian otters was taxonomically and functionally different by age, which is thought to be attributed to the difference in the diet in their life stages. This study provided baseline information regarding the gut microbiota of Eurasian otters for the first time and contributes to improvement in their management in captivity.


Author(s):  
Tony Simons ◽  
Hannes Leroy ◽  
Lisa Nishii

Behavioral integrity (BI) describes the extent to which an observer believes that an actor's words tend to align with their actions. It considers whether the actor is seen as keeping promises and enacting the same values they espouse. Although the construct of BI was introduced in 1999 and developed more fully in 2002, it builds on the work of earlier scholars that discussed related notions of hypocrisy, credibility, and gaps between espousal and enactment. Since the 2002 paper, a growing literature has established the BI construct, largely but not exclusively in the leadership realm, as a critical antecedent to positive attitudes such as trust and commitment, positive behaviors such as turnover and performance, and as a moderator of the effectiveness of leadership initiatives. BI is by definition subjectively assessed, and perceptions of BI are susceptible to various forms of perceptual biases. A variety of factors appear to affect whether observers interpret a particular word-action alignment or gap as an indication of the actor's high or low BI. In this article, we examine and synthesize this literature and suggest directions for future research. We discuss the early history of BI research and then examine contemporary research at the individual, group, and organizational levels of analysis. We assess what we have learned and what methodological challenges and theoretical questions remain to be addressed. We hope in this way to stimulate further research on this consequential construct. Expected final online publication date for the Annual Review of Organizational Psychology and Organizational Behavior, Volume 9 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Christine L. Plavchak ◽  
William C. Smith ◽  
Carmen R.M. Bria ◽  
S. Kim Ratanathanawongs Williams

Field-flow fractionation (FFF) is a family of techniques that was created especially for separating and characterizing macromolecules, nanoparticles, and micrometer-sized analytes. It is coming of age as new nanomaterials, polymers, composites, and biohybrids with remarkable properties are introduced and new analytical challenges arise due to synthesis heterogeneities and the motivation to correlate analyte properties with observed performance. Appreciation of the complexity of biological, pharmaceutical, and food systems and the need to monitor multiple components across many size scales have also contributed to FFF's growth. This review highlights recent advances in FFF capabilities, instrumentation, and applications that feature the unique characteristics of different FFF techniques in determining a variety of information, such as averages and distributions in size, composition, shape, architecture, and microstructure and in investigating transformations and function. Expected final online publication date for the Annual Review of Analytical Chemistry, Volume 14 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document