Animal Models of Aging Research: Implications for Human Aging and Age-Related Diseases

2015 ◽  
Vol 3 (1) ◽  
pp. 283-303 ◽  
Author(s):  
Sarah J. Mitchell ◽  
Morten Scheibye-Knudsen ◽  
Dan L. Longo ◽  
Rafael de Cabo
Gerontology ◽  
2016 ◽  
Vol 63 (2) ◽  
pp. 103-117 ◽  
Author(s):  
Cia-Hin Lau ◽  
Yousin Suh

The recent advent of genome and epigenome editing technologies has provided a new paradigm in which the landscape of the human genome and epigenome can be precisely manipulated in their native context. Genome and epigenome editing technologies can be applied to many aspects of aging research and offer the potential to develop novel therapeutics against age-related diseases. Here, we discuss the latest technological advances in the CRISPR-based genome and epigenome editing toolbox, and provide insight into how these synthetic biology tools could facilitate aging research by establishing in vitro cell and in vivo animal models to dissect genetic and epigenetic mechanisms underlying aging and age-related diseases. We discuss recent developments in the field with the aims to precisely modulate gene expression and dynamic epigenetic landscapes in a spatial and temporal manner in cellular and animal models, by complementing the CRISPR-based editing capability with conditional genetic manipulation tools including chemically inducible expression systems, optogenetics, logic gate genetic circuits, tissue-specific promoters, and the serotype-specific adeno-associated virus. We also discuss how the combined use of genome and epigenome editing tools permits investigators to uncover novel molecular pathways involved in the pathophysiology and etiology conferred by risk variants associated with aging and aging-related disease. A better understanding of the genetic and epigenetic regulatory mechanisms underlying human aging and age-related disease will significantly contribute to the developments of new therapeutic interventions for extending health span and life span, ultimately improving the quality of life in the elderly populations.


2015 ◽  
Vol 112 (30) ◽  
pp. E4104-E4110 ◽  
Author(s):  
Daniel W. Belsky ◽  
Avshalom Caspi ◽  
Renate Houts ◽  
Harvey J. Cohen ◽  
David L. Corcoran ◽  
...  

Antiaging therapies show promise in model organism research. Translation to humans is needed to address the challenges of an aging global population. Interventions to slow human aging will need to be applied to still-young individuals. However, most human aging research examines older adults, many with chronic disease. As a result, little is known about aging in young humans. We studied aging in 954 young humans, the Dunedin Study birth cohort, tracking multiple biomarkers across three time points spanning their third and fourth decades of life. We developed and validated two methods by which aging can be measured in young adults, one cross-sectional and one longitudinal. Our longitudinal measure allows quantification of the pace of coordinated physiological deterioration across multiple organ systems (e.g., pulmonary, periodontal, cardiovascular, renal, hepatic, and immune function). We applied these methods to assess biological aging in young humans who had not yet developed age-related diseases. Young individuals of the same chronological age varied in their “biological aging” (declining integrity of multiple organ systems). Already, before midlife, individuals who were aging more rapidly were less physically able, showed cognitive decline and brain aging, self-reported worse health, and looked older. Measured biological aging in young adults can be used to identify causes of aging and evaluate rejuvenation therapies.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1934
Author(s):  
Marta Ziętek ◽  
Katarzyna Barłowska ◽  
Barbara Wijas ◽  
Ewa Szablisty ◽  
Atanas G. Atanasov ◽  
...  

Aging is associated with a drastic decline in fertility/fecundity and with an increased risk of pregnancy complications. Resveratrol (RES), a natural polyphenolic compound, has shown anti-oxidant and anti-inflammatory activities in both human and animal models, thus representing a potential therapeutic and prophylactic anti-aging supplement. Here, we investigated whether preconceptional resveratrol supplementation improved reproductive outcomes in mid-aged (8-month-old) and old (12-month-old) C57BL/6J female mice. Female siblings were cohoused and assigned to either RES or vehicle supplementation to drinking water for 10 consecutive weeks. Subsequently, females were mated with non-supplemented males and their pregnancy outcomes were monitored. RES improved mating success in old, but not in mid-aged females, and prevented the occurrence of delivery complications in the latter. These results indicate that preconceptional RES supplementation could partially improve age-related reproductive complications, but it was not sufficient to restore fecundity in female mice at a very advanced age.


2021 ◽  
Vol 12 ◽  
Author(s):  
Serena Dato ◽  
Paolina Crocco ◽  
Nicola Rambaldi Migliore ◽  
Francesco Lescai

BackgroundAging is a complex phenotype influenced by a combination of genetic and environmental factors. Although many studies addressed its cellular and physiological age-related changes, the molecular causes of aging remain undetermined. Considering the biological complexity and heterogeneity of the aging process, it is now clear that full understanding of mechanisms underlying aging can only be achieved through the integration of different data types and sources, and with new computational methods capable to achieve such integration.Recent AdvancesIn this review, we show that an omics vision of the age-dependent changes occurring as the individual ages can provide researchers with new opportunities to understand the mechanisms of aging. Combining results from single-cell analysis with systems biology tools would allow building interaction networks and investigate how these networks are perturbed during aging and disease. The development of high-throughput technologies such as next-generation sequencing, proteomics, metabolomics, able to investigate different biological markers and to monitor them simultaneously during the aging process with high accuracy and specificity, represents a unique opportunity offered to biogerontologists today.Critical IssuesAlthough the capacity to produce big data drastically increased over the years, integration, interpretation and sharing of high-throughput data remain major challenges. In this paper we present a survey of the emerging omics approaches in aging research and provide a large collection of datasets and databases as a useful resource for the scientific community to identify causes of aging. We discuss their peculiarities, emphasizing the need for the development of methods focused on the integration of different data types.Future DirectionsWe critically review the contribution of bioinformatics into the omics of aging research, and we propose a few recommendations to boost collaborations and produce new insights. We believe that significant advancements can be achieved by following major developments in bioinformatics, investing in diversity, data sharing and community-driven portable bioinformatics methods. We also argue in favor of more engagement and participation, and we highlight the benefits of new collaborations along these lines. This review aims at being a useful resource for many researchers in the field, and a call for new partnerships in aging research.


2017 ◽  
Vol 217 (1) ◽  
pp. 65-77 ◽  
Author(s):  
Domhnall McHugh ◽  
Jesús Gil

Aging is the major risk factor for cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. Although we are far from understanding the biological basis of aging, research suggests that targeting the aging process itself could ameliorate many age-related pathologies. Senescence is a cellular response characterized by a stable growth arrest and other phenotypic alterations that include a proinflammatory secretome. Senescence plays roles in normal development, maintains tissue homeostasis, and limits tumor progression. However, senescence has also been implicated as a major cause of age-related disease. In this regard, recent experimental evidence has shown that the genetic or pharmacological ablation of senescent cells extends life span and improves health span. Here, we review the cellular and molecular links between cellular senescence and aging and discuss the novel therapeutic avenues that this connection opens.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S234-S234
Author(s):  
Daniel Promislow

Abstract Advances in whole genome sequencing have dramatically increased our potential to understand what shapes variation in rates of aging and age-related disease in natural populations, but we are still far from realizing this potential. Researchers have identified thousands of genetic markers associated with complex human traits. However, these markers typically explain a very small fraction of the observed variance, leaving an enormous explanatory gap between genotype and phenotype. I will present data from diverse species to illustrate the power of so-called endophenotypes—the epigenome, transcriptome, proteome, and metabolome—to bridge the genotype-phenotype gap. Using multivariate and network models that integrate genetic information with other endophenotype variation, we are closer than ever to understanding the mechanisms that account for natural variation in aging and age-related disease, and the evolutionary forces that have shaped that variation.


2009 ◽  
Vol 9 ◽  
pp. 1449-1462 ◽  
Author(s):  
Baomin Li ◽  
Sonali Jog ◽  
Jose Candelario ◽  
Sita Reddy ◽  
Lucio Comai

Syndromes of accelerated aging could provide an entry point for identifying and dissecting the cellular pathways that are involved in the development of age-related pathologies in the general population. However, their usefulness for aging research has been controversial, as it has been argued that these diseases do not faithfully reflect the process of natural aging. Here we review recent findings on the molecular basis of two progeroid diseases, Werner syndrome (WS) and Hutchinson-Gilford progeria syndrome (HGPS), and highlight functional connections to cellular processes that may contribute to normal aging.


2005 ◽  
Vol 60 (2) ◽  
pp. 95-126 ◽  
Author(s):  
Michael Hogan

Age-related reduction in musculoskeletal, cardiovascular, and central nervous system resilience can result in wide-ranging limitations in adaptive capacity associated with negative outcomes such as cognitive decline, increased risk of cardiovascular disease, mobility problems, and increased incidence of debilitating falls. This article reviews the benefits of both cognitive and physical activity within the broad context of multiple system resilience in adult aging. Research on a unique form of combined physical/cognitive exercise, Tai Chi Chuan, is presented. The relationship between physiological and psychological gain associated with an activity intervention program is discussed in light of principles of rehabilitation, intervention compliance, subjective and objective gain, and the hypothesized value of combining physical exercise, cognitive exercise, and relaxation into a single program designed to promote resilience in older adults.


Sign in / Sign up

Export Citation Format

Share Document