Look Closely, the Beautiful May Be Small: Precursor-Derived Peptides in Plants

2019 ◽  
Vol 70 (1) ◽  
pp. 153-186 ◽  
Author(s):  
Vilde Olsson ◽  
Lisa Joos ◽  
Shanshuo Zhu ◽  
Kris Gevaert ◽  
Melinka A. Butenko ◽  
...  

During the past decade, a flurry of research focusing on the role of peptides as short- and long-distance signaling molecules in plant cell communication has been undertaken. Here, we focus on peptides derived from nonfunctional precursors, and we address several key questions regarding peptide signaling. We provide an overview of the regulatory steps involved in producing a biologically active peptide ligand that can bind its corresponding receptor(s) and discuss how this binding and subsequent activation lead to specific cellular outputs. We discuss different experimental approaches that can be used to match peptide ligands with their receptors. Lastly, we explore how peptides evolved from basic signaling units regulating essential processes in plants to more complex signaling systems as new adaptive traits developed and how nonplant organisms exploit this signaling machinery by producing peptide mimics.

Author(s):  
Byeong Wook Jeon ◽  
Min-Jung Kim ◽  
Shashank K Pandey ◽  
Eunkyoo Oh ◽  
Pil Joon Seo ◽  
...  

Abstract Roots provide the plant with water and nutrients and anchor plants in a substrate. Root development is controlled by plant hormones and various sets of transcription factors. Recently, various small peptides and their cognate receptors have been identified to control root development. Small peptides bind to membrane-localized receptor-like kinases, inducing their dimerization with coreceptor proteins for signaling activation and giving rise to cellular signaling outputs. Small peptides function as local and long-distance signaling molecules involved in cell-to-cell communication networks, coordinating root development. In this review, we survey recent advances in the peptide ligand-mediated signaling pathways involved in the control of root development in Arabidopsis thaliana. We describe the interconnection between peptide signaling and conventional phytohormone signaling. Additionally, we discuss diversities of identified peptide-receptor interactions during plant root development.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3478
Author(s):  
Sandra Ramotowska ◽  
Aleksandra Ciesielska ◽  
Mariusz Makowski

The interactions of compounds with DNA have been studied since the recognition of the role of nucleic acid in organisms. The design of molecules which specifically interact with DNA sequences allows for the control of the gene expression. Determining the type and strength of such interaction is an indispensable element of pharmaceutical studies. Cognition of the therapeutic action mechanisms is particularly important for designing new drugs. Owing to their sensitivity, simplicity, and low costs, electrochemical methods are increasingly used for this type of research. Compared to other techniques, they require a small number of samples and are characterized by a high reliability. These methods can provide information about the type of interaction and the binding strength, as well as the damage caused by biologically active molecules targeting the cellular DNA. This review paper summarizes the various electrochemical approaches used for the study of the interactions between pharmaceuticals and DNA. The main focus is on the papers from the last decade, with particular attention on the voltammetric techniques. The most preferred experimental approaches, the electrode materials and the new methods of modification are presented. The data on the detection ranges, the binding modes and the binding constant values of pharmaceuticals are summarized. Both the importance of the presented research and the importance of future prospects are discussed.


4open ◽  
2019 ◽  
Vol 2 ◽  
pp. 11 ◽  
Author(s):  
Björn L.D.M. Brücher ◽  
Ijaz S. Jamall

Fibroblasts are actively involved in the creation of the stroma and the extracellular matrix which are important for cell adhesion, cell–cell communication, and tissue metabolism. The role of fibrosis in carcinogenesis can be examined by analogy to tissues of various cancers. The orchestration of letters in the interplay of manifold components with signaling and crosstalk is incompletely understood but available evidence suggests a hitherto underappreciated role for fibrosis in carcinogenesis. Complex signaling and crosstalk by pathogenic stimuli evoke persistent subclinical inflammation, which in turn, results in a cascade of different cell types, ubiquitous proteins and their corresponding enzymes, cytokine releases, and multiple signaling pathways promoting the onset of fibrosis. There is considerable evidence that the body's attempt to resolve such a modified extracellular environment leads to further disruption of homeostasis and the genesis of the precancerous niche as part of the six-step process that describes carcinogenesis. The precancerous niche is formed and can be understood to develop as a result of (1) pathogenic stimulus, (2) chronic inflammation, and (3) fibrosis with alterations of the extracellular matrix, stromal rigidity, and mechano-transduction. This is why carcinogenesis is not just a process of aberrant cell growth with damaged genetic material but the role of the PCN in its entirety reveals how carcinogenesis can occur without invoking the need for somatic mutations.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Sudipta Biswas ◽  
Liang Xin ◽  
Soumya Panigrahi ◽  
Alejandro Zimman ◽  
Valentin Yakubenko ◽  
...  

A prothrombotic state and increased platelet reactivity are common in hyperlipidemia and oxidative stress. Lipid peroxidation, a major consequence of oxidative stress, generates highly reactive products including hydroxy-w-oxoalkenoic acids that modify autologous proteins generating biologically active derivatives. Phosphatidylethanolamine, the second most abundant eukaryotic phospholipid can also be modified by hydroxy-w-oxoalkenoic acids. However, the conditions leading to accumulation of such derivatives in circulation and their biological activities remain poorly understood. We now show that carboxyalkylpyrrole-phosphatidylethanolamine derivatives (CAP-PE) accumulate in plasma of hyperlipidemic ApoE -/- mice. CAP-PE directly bind to TLR2 and induce platelet integrin alpha 2b beta 3 activation and P-selectin expression in TLR2 dependent manner. Platelet activation by CAP-PE includes assembly of TLR2/TLR1 receptor complex, induction of downstream signaling via MyD88/TIRAP, phosphorylation of IRAK4, and subsequent activation of TRAF6. This in turn activates the Src family kinases, Syk and PLC gamma 2 and platelet integrins. By intravital thrombosis studies we have demonstrated that CAP-PE accelerate thrombosis in TLR2 dependent manner. Furthermore, we demonstrate that TLR2 deficient mice are protected from accelerated thrombosis induced by hyperlipidemia. Taken together, our studies demonstrate a cross-talk between innate immunity and integrin activation signaling pathways in platelets and reveal that TLR2 plays a key role in platelet hyperreactivity and prothrombotic state in hyperlipidemia.


Parasitology ◽  
1997 ◽  
Vol 115 (7) ◽  
pp. 55-66 ◽  
Author(s):  
M. PLEBANSKI ◽  
E. A. M. LEE ◽  
A. V. S. HILL

T cells are central to immunity in malaria. CD4+ helper T cells favour the generation of high-affinity antibodies that are effective against blood stages and they are necessary to establish immunological memory. The intrahepatic stage of infection can be eliminated by specific CD8+ cytotoxic T cells (CTL). Cytokines secreted by CD4+ T cells may also contribute to liver stage immunity. Evolution has selected varied mechanisms in pathogens to avoid recognition by T cells. T cells recognize foreign epitopes as complexes with host major histocompatibility (MHC) molecules. Thus, a simple form of evasion is to mutate amino acid residues which allow binding to an MHC allele. Recently, more sophisticated forms of polymorphic evasion have been described. In altered peptide ligand (APL) antagonism, the concurrent presentation of particular closely related epitope variants can prevent memory T cell effector functions such as cytotoxicity, lymphokine production and proliferation. In immune interference, the effect of the concurrent presentation of such related epitope variants can go a step further and prevent the induction of memory T cells from naive precursors. The analysis of immune responses to a protein of P. falciparum, the circumsporozoite protein (CSP), indicates that the malaria parasite may utilize these evasion strategies.


Sign in / Sign up

Export Citation Format

Share Document