scholarly journals Regulation of Neuronal Differentiation, Function, and Plasticity by Alternative Splicing

2018 ◽  
Vol 34 (1) ◽  
pp. 451-469 ◽  
Author(s):  
Elisabetta Furlanis ◽  
Peter Scheiffele

Posttranscriptional mechanisms provide powerful means to expand the coding power of genomes. In nervous systems, alternative splicing has emerged as a fundamental mechanism not only for the diversification of protein isoforms but also for the spatiotemporal control of transcripts. Thus, alternative splicing programs play instructive roles in the development of neuronal cell type–specific properties, neuronal growth, self-recognition, synapse specification, and neuronal network function. Here we discuss the most recent genome-wide efforts on mapping RNA codes and RNA-binding proteins for neuronal alternative splicing regulation. We illustrate how alternative splicing shapes key steps of neuronal development, neuronal maturation, and synaptic properties. Finally, we highlight efforts to dissect the spatiotemporal dynamics of alternative splicing and their potential contribution to neuronal plasticity and the mature nervous system.

2016 ◽  
Vol 23 (5) ◽  
pp. 466-477 ◽  
Author(s):  
Enrique Lara-Pezzi ◽  
Manuel Desco ◽  
Alberto Gatto ◽  
María Victoria Gómez-Gaviro

The complexity of the mammalian brain requires highly specialized protein function and diversity. As neurons differentiate and the neuronal circuitry is established, several mRNAs undergo alternative splicing and other posttranscriptional changes that expand the variety of protein isoforms produced. Recent advances are beginning to shed light on the molecular mechanisms that regulate isoform switching during neurogenesis and the role played by specific RNA binding proteins in this process. Neurogenesis and neuronal wiring were recently shown to also be regulated by RNA degradation through nonsense-mediated decay. An additional layer of regulatory complexity in these biological processes is the interplay between alternative splicing and long noncoding RNAs. Dysregulation of posttranscriptional regulation results in defective neuronal differentiation and/or synaptic connections that lead to neurodevelopmental and psychiatric disorders.


2001 ◽  
Vol 21 (4) ◽  
pp. 1285-1296 ◽  
Author(s):  
Andrea N. Ladd ◽  
Nicolas Charlet-B. ◽  
Thomas A. Cooper

ABSTRACT Alternative splicing of cardiac troponin T (cTNT) exon 5 undergoes a developmentally regulated switch such that exon inclusion predominates in embryonic, but not adult, striated muscle. We previously described four muscle-specific splicing enhancers (MSEs) within introns flanking exon 5 in chicken cTNT that are both necessary and sufficient for exon inclusion in embryonic muscle. We also demonstrated that CUG-binding protein (CUG-BP) binds a conserved CUG motif within a human cTNT MSE and positively regulates MSE-dependent exon inclusion. Here we report that CUG-BP is one of a novel family of developmentally regulated RNA binding proteins that includes embryonically lethal abnormal vision-type RNA binding protein 3 (ETR-3). This family, which we call CELF proteins for CUG-BP- and ETR-3-like factors, specifically bound MSE-containing RNAs in vitro and activated MSE-dependent exon inclusion of cTNT minigenes in vivo. The expression of two CELF proteins is highly restricted to brain. CUG-BP, ETR-3, and CELF4 are more broadly expressed, and expression is developmentally regulated in striated muscle and brain. Changes in the level of expression and isoforms of ETR-3 in two different developmental systems correlated with regulated changes in cTNT splicing. A switch from cTNT exon skipping to inclusion tightly correlated with induction of ETR-3 protein expression during differentiation of C2C12 myoblasts. During heart development, the switch in cTNT splicing correlated with a transition in ETR-3 protein isoforms. We propose that ETR-3 is a major regulator of cTNT alternative splicing and that the CELF family plays an important regulatory role in cell-specific alternative splicing during normal development and disease.


2021 ◽  
Vol 14 ◽  
Author(s):  
María Landínez-Macías ◽  
Olivier Urwyler

Neuronal morphogenesis, integration into circuits, and remodeling of synaptic connections occur in temporally and spatially defined steps. Accordingly, the expression of proteins and specific protein isoforms that contribute to these processes must be controlled quantitatively in time and space. A wide variety of post-transcriptional regulatory mechanisms, which act on pre-mRNA and mRNA molecules contribute to this control. They are thereby critically involved in physiological and pathophysiological nervous system development, function, and maintenance. Here, we review recent findings on how mRNA metabolism contributes to neuronal development, from neural stem cell maintenance to synapse specification, with a particular focus on axon growth, guidance, branching, and synapse formation. We emphasize the role of RNA-binding proteins, and highlight their emerging roles in the poorly understood molecular processes of RNA editing, alternative polyadenylation, and temporal control of splicing, while also discussing alternative splicing, RNA localization, and local translation. We illustrate with the example of the evolutionary conserved Musashi protein family how individual RNA-binding proteins are, on the one hand, acting in different processes of RNA metabolism, and, on the other hand, impacting multiple steps in neuronal development and circuit formation. Finally, we provide links to diseases that have been associated with the malfunction of RNA-binding proteins and disrupted post-transcriptional regulation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 531-531
Author(s):  
Sherry Gee ◽  
Jonathan Villalobos ◽  
Miki Yamamoto ◽  
Tyson A. Clark ◽  
Jeong-Ah Kang ◽  
...  

Abstract Spatial and temporal regulation of alternative pre-mRNA splicing determines which exons are incorporated into mature mRNA, modulating mRNA coding capacity to ensure synthesis of appropriate protein isoforms throughout normal differentiation and development. During erythropoiesis, a stage-specific switch in pre-mRNA splicing activates incorporation of protein 4.1R exon 16, thereby increasing 4.1R affinity for spectrin and actin and mechanically strengthening red blood cell membranes. We are exploring the hypothesis that stage-specific changes in pre-mRNA splicing regulate expression of other critical genes during terminal erythropoiesis. Last year we described exon microarray and RT-PCR studies that revealed several novel pre-mRNA splicing switches in terminally differentiating human erythroid progenitors. These alternative splicing events involved well-annotated exons with consensus exon-intron boundaries, supporting a model in which these events represent a regulated alternative splicing program rather than a breakdown of splicing integrity in late erythropoiesis. Here we report additional evidence for this model by showing that several erythroid stage-specific switches in alternative pre-mRNA splicing are conserved between human and mouse. Primary mouse splenic erythroblasts from FVA-infected mice were cultured in vitro under differentiation conditions and used as the source of RNA for analysis of murine erythroid splicing events. From a total of seven internal cassette exons whose splicing was activated in late human erythroblasts, five exhibited an analogous splicing switch in murine erythroblasts. Comparative genomic analysis showed that these alternative exons are embedded in regions of unusually high sequence conservation among vertebrate species, suggesting that important regulatory signals are contained within the adjacent introns. Indeed, the flanking introns for several of these exons contain binding motifs for Fox2, an RNA binding protein and known splicing regulator for many tissue-specific splicing events. Further analysis of the conserved erythroid splicing events revealed the following: three splicing switches occur in transcripts encoding RNA binding proteins (MBNL2, HNRPLL, and SNRP70), suggesting significant changes in the RNA processing machinery of late erythroblasts; and three of these alternative exons encode premature stop codons that could induce nonsense mediated decay (NMD) and contribute to down-regulation of these genes during terminal erythropoiesis. Consistent with the latter hypothesis, inhibition of NMD in murine erythroblast cultures led to increased accumulation of mRNA isoforms containing the premature stop codons. Together these results suggest the existence of a highly regulated alternative splicing program that is critical for late erythroid differentiation.


2021 ◽  
Author(s):  
Huijuan Feng ◽  
Daniel F. Moakley ◽  
Shuonan Chen ◽  
Melissa G. McKenzie ◽  
Vilas Menon ◽  
...  

AbstractThe enormous neuronal cellular diversity in the mammalian brain, which is highly prototypical and organized in a hierarchical manner, is dictated by cell type-specific gene regulatory programs at the molecular level. Although prevalent in the brain, contribution of alternative splicing (AS) to the molecular diversity across neuronal cell types is just starting to emerge. Here we systematically investigated AS regulation across over 100 transcriptomically defined neuronal types of the adult mouse cortex using deep single cell RNA-sequencing (scRNA-seq) data. We found distinct splicing programs between glutamatergic and GABAergic neurons and between subclasses within each neuronal class, consisting of overlapping sets of alternative exons showing differential splicing at multiple hierarchical levels. Using an integrative approach, our analysis suggests that RNA-binding proteins (RBPs) Celf1/2, Mbnl2 and Khdrbs3 are preferentially expressed and more active in glutamatergic neurons, while Elavl2 and Qk are preferentially expressed and more active in GABAergic neurons. Importantly, these and additional RBPs also contribute to differential splicing between neuronal subclasses at multiple hierarchical levels, and some RBPs drive splicing dynamics that do not conform to the hierarchical structure defined by the transcriptional profiles. Thus, our results suggest graded regulation of AS across neuronal cell types, which provides a molecular mechanism orthogonal to, rather than downstream of, transcriptional regulation in specifying neuronal identity and function.SignificanceAlternative splicing (AS) is extensively used in the mammalian brain, but its contribution to the molecular and cellular diversity across neuronal cell types remains poorly understood. Through systematic and integrative analysis of AS regulation across over 100 transcriptomically defined cortical neuronal types, we found neuronal subclass-specific splicing regulatory programs consists of overlapping alternative exons showing differential splicing at multiple hierarchical levels. This graded AS regulation is controlled by unique combinations of RNA-binding proteins (RBPs). Importantly, these RBPs also drive splicing dynamics across neuronal cell types that do not conform to the hierarchical taxonomy established based on transcriptional profiles, suggesting that the graded AS regulation provides a molecular mechanism orthogonal to transcriptional regulation in specifying neuronal identity and function.


2017 ◽  
Vol 474 (6) ◽  
pp. 885-896 ◽  
Author(s):  
Sathiya Pandi Narayanan ◽  
Smriti Singh ◽  
Sanjeev Shukla

The discovery of an increasing number of alternative splicing events in the human genome highlighted that ∼94% of genes generate alternatively spliced transcripts that may produce different protein isoforms with diverse functions. It is now well known that several diseases are a direct and indirect consequence of aberrant splicing events in humans. In addition to the conventional mode of alternative splicing regulation by ‘cis’ RNA-binding sites and ‘trans’ RNA-binding proteins, recent literature provides enormous evidence for epigenetic regulation of alternative splicing. The epigenetic modifications may regulate alternative splicing by either influencing the transcription elongation rate of RNA polymerase II or by recruiting a specific splicing regulator via different chromatin adaptors. The epigenetic alterations and aberrant alternative splicing are known to be associated with various diseases individually, but this review discusses/highlights the latest literature on the role of epigenetic alterations in the regulation of alternative splicing and thereby cancer progression. This review also points out the need for further studies to understand the interplay between epigenetic modifications and aberrant alternative splicing in cancer progression.


2018 ◽  
Author(s):  
Luisa M Arake de Tacca ◽  
Mia C Pulos ◽  
Stephen N Floor ◽  
Jamie Cate

Polypyrimidine tract-binding proteins (PTBPs) are RNA binding proteins that regulate a number of post-transcriptional events. Human PTBP1 transits between the nucleus and cytoplasm and is thought to regulate RNA processes in both. However, information about PTBP1 mRNA isoforms and regulation of PTPB1 expression remain incomplete. Here we mapped the major PTBP1 mRNA isoforms in HEK293T cells, and identified alternative 5' and 3' untranslated regions (5' UTRs, 3' UTRs) as well as alternative splicing patterns in the protein coding region. We also assessed how the observed PTBP1 mRNA isoforms contribute to PTBP1 expression in different phases of the cell cycle. Previously, PTBP1 mRNAs were shown to crosslink to eukaryotic translation initiation factor 3 (eIF3). We find that eIF3 binds differently to each PTBP1 mRNA isoform in a cell cycle-dependent manner. We also observe a strong correlation between eIF3 binding to PTBP1 mRNAs and repression of PTBP1 levels during the S phase of the cell cycle. Our results provide evidence of translational regulation of PTBP1 protein levels during the cell cycle, which may affect downstream regulation of alternative splicing and translation mediated by PTBP1 protein isoforms.


2008 ◽  
Vol 28 (19) ◽  
pp. 6033-6043 ◽  
Author(s):  
Julian P. Venables ◽  
Chu-Shin Koh ◽  
Ulrike Froehlich ◽  
Elvy Lapointe ◽  
Sonia Couture ◽  
...  

ABSTRACT Alternative splicing is a key mechanism regulating gene expression, and it is often used to produce antagonistic activities particularly in apoptotic genes. Heterogeneous nuclear ribonucleoparticle (hnRNP) proteins form a family of RNA-binding proteins that coat nascent pre-mRNAs. Many but not all major hnRNP proteins have been shown to participate in splicing control. The range and specificity of hnRNP protein action remain poorly documented, even for those affecting splice site selection. We used RNA interference and a reverse transcription-PCR screening platform to examine the implications of 14 of the major hnRNP proteins in the splicing of 56 alternative splicing events in apoptotic genes. Out of this total of 784 alternative splicing reactions tested in three human cell lines, 31 responded similarly to a knockdown in at least two different cell lines. On the other hand, the impact of other hnRNP knockdowns was cell line specific. The broadest effects were obtained with hnRNP K and C, two proteins whose role in alternative splicing had not previously been firmly established. Different hnRNP proteins affected distinct sets of targets with little overlap even between closely related hnRNP proteins. Overall, our study highlights the potential contribution of all of these major hnRNP proteins in alternative splicing control and shows that the targets for individual hnRNP proteins can vary in different cellular contexts.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Arkadiusz Kajdasz ◽  
Daria Niewiadomska ◽  
Michal Sekrecki ◽  
Krzysztof Sobczak

AbstractCUG-binding protein, ELAV-like Family Member 1 (CELF1) plays an important role during the development of different tissues, such as striated muscle and brain tissue. CELF1 is an RNA-binding protein that regulates RNA metabolism processes, e.g., alternative splicing, and antagonizes other RNA-binding proteins, such as Muscleblind-like proteins (MBNLs). Abnormal activity of both classes of proteins plays a crucial role in the pathogenesis of myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults. In this work, we show that alternative splicing of exons forming both the 5′ and 3′ untranslated regions (UTRs) of CELF1 mRNA is efficiently regulated during development and tissue differentiation and is disrupted in skeletal muscles in the context of DM1. Alternative splicing of the CELF1 5′UTR leads to translation of two potential protein isoforms that differ in the lengths of their N-terminal domains. We also show that the MBNL and CELF proteins regulate the distribution of mRNA splicing isoforms with different 5′UTRs and 3′UTRs and affect the CELF1 expression by changing its sensitivity to specific microRNAs or RNA-binding proteins. Together, our findings show the existence of different mechanisms of regulation of CELF1 expression through the distribution of various 5′ and 3′ UTR isoforms within CELF1 mRNA.


Author(s):  
Kent E. Duncan

Both RNA-binding proteins (RBPs) and translation are increasingly implicated in several neurodegenerative diseases, but their specific roles in promoting disease are not yet fully defined. This chapter critically evaluates the evidence that altered translation of specific mRNAs mediated by RNA-binding proteins plays an important role in driving specific neurodegenerative diseases. First, diseases are discussed where a causal role for RNA-binding proteins in disease appears solid, but whether this involves altered translation is less clear. The main foci here are TAR DNA-binding protein (TDP-43) and fused in sarcoma (FUS) in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Subsequently, diseases are presented where altered translation is believed to contribute, but involvement of RNA-binding proteins is less clear. These include Huntington’s and other repeat expansion disorders such as fragile X tremor/ataxia syndrome (FXTAS), where repeat-induced non-AUG-initiated (RAN) translation is a focus. The potential contribution of both canonical and non-canonical RBPs to altered translation in Parkinson’s disease is discussed. The chapter closes by proposing key research frontiers for the field to explore and outlining methodological advances that could help to address them.


Sign in / Sign up

Export Citation Format

Share Document