Stage-Specific Switches in Alternative Pre-mRNA Splicing during Late Erythropoiesis Are Conserved from Mouse to Human

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 531-531
Author(s):  
Sherry Gee ◽  
Jonathan Villalobos ◽  
Miki Yamamoto ◽  
Tyson A. Clark ◽  
Jeong-Ah Kang ◽  
...  

Abstract Spatial and temporal regulation of alternative pre-mRNA splicing determines which exons are incorporated into mature mRNA, modulating mRNA coding capacity to ensure synthesis of appropriate protein isoforms throughout normal differentiation and development. During erythropoiesis, a stage-specific switch in pre-mRNA splicing activates incorporation of protein 4.1R exon 16, thereby increasing 4.1R affinity for spectrin and actin and mechanically strengthening red blood cell membranes. We are exploring the hypothesis that stage-specific changes in pre-mRNA splicing regulate expression of other critical genes during terminal erythropoiesis. Last year we described exon microarray and RT-PCR studies that revealed several novel pre-mRNA splicing switches in terminally differentiating human erythroid progenitors. These alternative splicing events involved well-annotated exons with consensus exon-intron boundaries, supporting a model in which these events represent a regulated alternative splicing program rather than a breakdown of splicing integrity in late erythropoiesis. Here we report additional evidence for this model by showing that several erythroid stage-specific switches in alternative pre-mRNA splicing are conserved between human and mouse. Primary mouse splenic erythroblasts from FVA-infected mice were cultured in vitro under differentiation conditions and used as the source of RNA for analysis of murine erythroid splicing events. From a total of seven internal cassette exons whose splicing was activated in late human erythroblasts, five exhibited an analogous splicing switch in murine erythroblasts. Comparative genomic analysis showed that these alternative exons are embedded in regions of unusually high sequence conservation among vertebrate species, suggesting that important regulatory signals are contained within the adjacent introns. Indeed, the flanking introns for several of these exons contain binding motifs for Fox2, an RNA binding protein and known splicing regulator for many tissue-specific splicing events. Further analysis of the conserved erythroid splicing events revealed the following: three splicing switches occur in transcripts encoding RNA binding proteins (MBNL2, HNRPLL, and SNRP70), suggesting significant changes in the RNA processing machinery of late erythroblasts; and three of these alternative exons encode premature stop codons that could induce nonsense mediated decay (NMD) and contribute to down-regulation of these genes during terminal erythropoiesis. Consistent with the latter hypothesis, inhibition of NMD in murine erythroblast cultures led to increased accumulation of mRNA isoforms containing the premature stop codons. Together these results suggest the existence of a highly regulated alternative splicing program that is critical for late erythroid differentiation.

2018 ◽  
Author(s):  
Luisa M Arake de Tacca ◽  
Mia C Pulos ◽  
Stephen N Floor ◽  
Jamie Cate

Polypyrimidine tract-binding proteins (PTBPs) are RNA binding proteins that regulate a number of post-transcriptional events. Human PTBP1 transits between the nucleus and cytoplasm and is thought to regulate RNA processes in both. However, information about PTBP1 mRNA isoforms and regulation of PTPB1 expression remain incomplete. Here we mapped the major PTBP1 mRNA isoforms in HEK293T cells, and identified alternative 5' and 3' untranslated regions (5' UTRs, 3' UTRs) as well as alternative splicing patterns in the protein coding region. We also assessed how the observed PTBP1 mRNA isoforms contribute to PTBP1 expression in different phases of the cell cycle. Previously, PTBP1 mRNAs were shown to crosslink to eukaryotic translation initiation factor 3 (eIF3). We find that eIF3 binds differently to each PTBP1 mRNA isoform in a cell cycle-dependent manner. We also observe a strong correlation between eIF3 binding to PTBP1 mRNAs and repression of PTBP1 levels during the S phase of the cell cycle. Our results provide evidence of translational regulation of PTBP1 protein levels during the cell cycle, which may affect downstream regulation of alternative splicing and translation mediated by PTBP1 protein isoforms.


2016 ◽  
Vol 23 (5) ◽  
pp. 466-477 ◽  
Author(s):  
Enrique Lara-Pezzi ◽  
Manuel Desco ◽  
Alberto Gatto ◽  
María Victoria Gómez-Gaviro

The complexity of the mammalian brain requires highly specialized protein function and diversity. As neurons differentiate and the neuronal circuitry is established, several mRNAs undergo alternative splicing and other posttranscriptional changes that expand the variety of protein isoforms produced. Recent advances are beginning to shed light on the molecular mechanisms that regulate isoform switching during neurogenesis and the role played by specific RNA binding proteins in this process. Neurogenesis and neuronal wiring were recently shown to also be regulated by RNA degradation through nonsense-mediated decay. An additional layer of regulatory complexity in these biological processes is the interplay between alternative splicing and long noncoding RNAs. Dysregulation of posttranscriptional regulation results in defective neuronal differentiation and/or synaptic connections that lead to neurodevelopmental and psychiatric disorders.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Lizhen Chen ◽  
Zhijie Liu ◽  
Bing Zhou ◽  
Chaoliang Wei ◽  
Yu Zhou ◽  
...  

Axon injury triggers dramatic changes in gene expression. While transcriptional regulation of injury-induced gene expression is widely studied, less is known about the roles of RNA binding proteins (RBPs) in post-transcriptional regulation during axon regeneration. In C. elegans the CELF (CUGBP and Etr-3 Like Factor) family RBP UNC-75 is required for axon regeneration. Using crosslinking immunoprecipitation coupled with deep sequencing (CLIP-seq) we identify a set of genes involved in synaptic transmission as mRNA targets of UNC-75. In particular, we show that UNC-75 regulates alternative splicing of two mRNA isoforms of the SNARE Syntaxin/unc-64. In C. elegans mutants lacking unc-75 or its targets, regenerating axons form growth cones, yet are deficient in extension. Extending these findings to mammalian axon regeneration, we show that mouse Celf2 expression is upregulated after peripheral nerve injury and that Celf2 mutant mice are defective in axon regeneration. Further, mRNAs for several Syntaxins show CELF2 dependent regulation. Our data delineate a post-transcriptional regulatory pathway with a conserved role in regenerative axon extension.


2020 ◽  
Vol 29 (R1) ◽  
pp. R89-R99
Author(s):  
Deivid Carvalho Rodrigues ◽  
Marat Mufteev ◽  
James Ellis

Abstract The methyl-CpG-binding protein 2 (MECP2) is a critical global regulator of gene expression. Mutations in MECP2 cause neurodevelopmental disorders including Rett syndrome (RTT). MECP2 exon 2 is spliced into two alternative messenger ribonucleic acid (mRNA) isoforms encoding MECP2-E1 or MECP2-E2 protein isoforms that differ in their N-termini. MECP2-E2, isolated first, was used to define the general roles of MECP2 in methyl-deoxyribonucleic acid (DNA) binding, targeting of transcriptional regulatory complexes, and its disease-causing impact in RTT. It was later found that MECP2-E1 is the most abundant isoform in the brain and its exon 1 is also mutated in RTT. MECP2 transcripts undergo alternative polyadenylation generating mRNAs with four possible 3′untranslated region (UTR) lengths ranging from 130 to 8600 nt. Together, the exon and 3′UTR isoforms display remarkable abundance disparity across cell types and tissues during development. These findings indicate discrete means of regulation and suggest that protein isoforms perform non-overlapping roles. Multiple regulatory programs have been explored to explain these disparities. DNA methylation patterns of the MECP2 promoter and first intron impact MECP2-E1 and E2 isoform levels. Networks of microRNAs and RNA-binding proteins also post-transcriptionally regulate the stability and translation efficiency of MECP2 3′UTR isoforms. Finally, distinctions in biophysical properties in the N-termini between MECP2-E1 and E2 lead to variable protein stabilities and DNA binding dynamics. This review describes the steps taken from the discovery of MECP2, the description of its key functions, and its association with RTT, to the emergence of evidence revealing how MECP2 isoforms are differentially regulated at the transcriptional, post-transcriptional and post-translational levels.


2001 ◽  
Vol 21 (4) ◽  
pp. 1285-1296 ◽  
Author(s):  
Andrea N. Ladd ◽  
Nicolas Charlet-B. ◽  
Thomas A. Cooper

ABSTRACT Alternative splicing of cardiac troponin T (cTNT) exon 5 undergoes a developmentally regulated switch such that exon inclusion predominates in embryonic, but not adult, striated muscle. We previously described four muscle-specific splicing enhancers (MSEs) within introns flanking exon 5 in chicken cTNT that are both necessary and sufficient for exon inclusion in embryonic muscle. We also demonstrated that CUG-binding protein (CUG-BP) binds a conserved CUG motif within a human cTNT MSE and positively regulates MSE-dependent exon inclusion. Here we report that CUG-BP is one of a novel family of developmentally regulated RNA binding proteins that includes embryonically lethal abnormal vision-type RNA binding protein 3 (ETR-3). This family, which we call CELF proteins for CUG-BP- and ETR-3-like factors, specifically bound MSE-containing RNAs in vitro and activated MSE-dependent exon inclusion of cTNT minigenes in vivo. The expression of two CELF proteins is highly restricted to brain. CUG-BP, ETR-3, and CELF4 are more broadly expressed, and expression is developmentally regulated in striated muscle and brain. Changes in the level of expression and isoforms of ETR-3 in two different developmental systems correlated with regulated changes in cTNT splicing. A switch from cTNT exon skipping to inclusion tightly correlated with induction of ETR-3 protein expression during differentiation of C2C12 myoblasts. During heart development, the switch in cTNT splicing correlated with a transition in ETR-3 protein isoforms. We propose that ETR-3 is a major regulator of cTNT alternative splicing and that the CELF family plays an important regulatory role in cell-specific alternative splicing during normal development and disease.


2020 ◽  
Vol 21 (24) ◽  
pp. 9424
Author(s):  
Juan F. García-Moreno ◽  
Luísa Romão

Alternative splicing (AS) of precursor mRNA (pre-mRNA) is a cellular post-transcriptional process that generates protein isoform diversity. Nonsense-mediated RNA decay (NMD) is an mRNA surveillance pathway that recognizes and selectively degrades transcripts containing premature translation-termination codons (PTCs), thereby preventing the production of truncated proteins. Nevertheless, NMD also fine-tunes the gene expression of physiological mRNAs encoding full-length proteins. Interestingly, around one third of all AS events results in PTC-containing transcripts that undergo NMD. Numerous studies have reported a coordinated action between AS and NMD, in order to regulate the expression of several genes, especially those coding for RNA-binding proteins (RBPs). This coupling of AS to NMD (AS-NMD) is considered a gene expression tool that controls the ratio of productive to unproductive mRNA isoforms, ultimately degrading PTC-containing non-functional mRNAs. In this review, we focus on the mechanisms underlying AS-NMD, and how this regulatory process is able to control the homeostatic expression of numerous RBPs, including splicing factors, through auto- and cross-regulatory feedback loops. Furthermore, we discuss the importance of AS-NMD in the regulation of biological processes, such as cell differentiation. Finally, we analyze interesting recent data on the relevance of AS-NMD to human health, covering its potential roles in cancer and other disorders.


2017 ◽  
Vol 474 (6) ◽  
pp. 885-896 ◽  
Author(s):  
Sathiya Pandi Narayanan ◽  
Smriti Singh ◽  
Sanjeev Shukla

The discovery of an increasing number of alternative splicing events in the human genome highlighted that ∼94% of genes generate alternatively spliced transcripts that may produce different protein isoforms with diverse functions. It is now well known that several diseases are a direct and indirect consequence of aberrant splicing events in humans. In addition to the conventional mode of alternative splicing regulation by ‘cis’ RNA-binding sites and ‘trans’ RNA-binding proteins, recent literature provides enormous evidence for epigenetic regulation of alternative splicing. The epigenetic modifications may regulate alternative splicing by either influencing the transcription elongation rate of RNA polymerase II or by recruiting a specific splicing regulator via different chromatin adaptors. The epigenetic alterations and aberrant alternative splicing are known to be associated with various diseases individually, but this review discusses/highlights the latest literature on the role of epigenetic alterations in the regulation of alternative splicing and thereby cancer progression. This review also points out the need for further studies to understand the interplay between epigenetic modifications and aberrant alternative splicing in cancer progression.


2020 ◽  
Vol 117 (10) ◽  
pp. 5269-5279 ◽  
Author(s):  
John W. Phillips ◽  
Yang Pan ◽  
Brandon L. Tsai ◽  
Zhijie Xie ◽  
Levon Demirdjian ◽  
...  

We sought to define the landscape of alternative pre-mRNA splicing in prostate cancers and the relationship of exon choice to known cancer driver alterations. To do so, we compiled a metadataset composed of 876 RNA-sequencing (RNA-Seq) samples from five publicly available sources representing a range of prostate phenotypes from normal tissue to drug-resistant metastases. We subjected these samples to exon-level analysis with rMATS-turbo, purpose-built software designed for large-scale analyses of splicing, and identified 13,149 high-confidence cassette exon events with variable incorporation across samples. We then developed a computational framework, pathway enrichment-guided activity study of alternative splicing (PEGASAS), to correlate transcriptional signatures of 50 different cancer driver pathways with these alternative splicing events. We discovered that Myc signaling was correlated with incorporation of a set of 1,039 cassette exons enriched in genes encoding RNA binding proteins. Using a human prostate epithelial transformation assay, we confirmed the Myc regulation of 147 of these exons, many of which introduced frameshifts or encoded premature stop codons. Our results connect changes in alternative pre-mRNA splicing to oncogenic alterations common in prostate and many other cancers. We also establish a role for Myc in regulating RNA splicing by controlling the incorporation of nonsense-mediated decay-determinant exons in genes encoding RNA binding proteins.


2018 ◽  
Vol 34 (1) ◽  
pp. 451-469 ◽  
Author(s):  
Elisabetta Furlanis ◽  
Peter Scheiffele

Posttranscriptional mechanisms provide powerful means to expand the coding power of genomes. In nervous systems, alternative splicing has emerged as a fundamental mechanism not only for the diversification of protein isoforms but also for the spatiotemporal control of transcripts. Thus, alternative splicing programs play instructive roles in the development of neuronal cell type–specific properties, neuronal growth, self-recognition, synapse specification, and neuronal network function. Here we discuss the most recent genome-wide efforts on mapping RNA codes and RNA-binding proteins for neuronal alternative splicing regulation. We illustrate how alternative splicing shapes key steps of neuronal development, neuronal maturation, and synaptic properties. Finally, we highlight efforts to dissect the spatiotemporal dynamics of alternative splicing and their potential contribution to neuronal plasticity and the mature nervous system.


2021 ◽  
Vol 8 ◽  
Author(s):  
Heiyeun Koo ◽  
Jae Yeon Hwang ◽  
Sungbo Jung ◽  
Hyeyoung Park ◽  
Jinwoong Bok ◽  
...  

Alternative splicing (AS) refers to the production of multiple mRNA isoforms from a single gene due to alternative selection of exons or splice sites during pre-mRNA splicing. It is a primary mechanism of gene regulation in higher eukaryotes and significantly expands the functional complexity of eukaryotic organisms, contributing to animal development and disease. Recent studies have shown that AS also influences functional diversity by affecting the transcriptomic and proteomic profiles in a position-dependent manner in a single organ. The peripheral hearing organ, the cochlea, is organized to detect sounds at different frequencies depending on its location along the longitudinal axis. This unique functional configuration, the tonotopy, is known to be facilitated by differential gene expression along the cochlear duct. We profiled transcriptome-wide gene expression and AS changes that occur within the different positions of chick cochlea. These analyses revealed distinct gene expression profiles and AS, including a splicing program that is unique to tonotopy. Changes in the expression of splicing factors PTBP3, ESRP1, and ESRP2 were demonstrated to contribute to position-specific AS. RNA-binding motif enrichment analysis near alternatively spliced exons provided further insight into the combinatorial regulation of AS at different positions by different RNA-binding proteins. These data, along with gene ontology (GO) analysis, represent a comprehensive analysis of the dynamic regulation of AS at different positions in chick cochlea.


Sign in / Sign up

Export Citation Format

Share Document