scholarly journals Review—Recent Trends on the Electrochemical Sensors Used for the Determination of Tartrazine and Sunset Yellow FCF from Food and Beverage Products

Author(s):  
RAMONA Georgescu State ◽  
Jacobus Frederick van Staden ◽  
Raluca Ioana Stefan-van Staden

Abstract Synthetic dyes were widely used in food industry due to the advantages offered, such as good stability to oxygen, light, and pH, reproducibility, bright color, low sensitivity to storage conditions and technological processing, and of course, low cost. Unfortunately, some of them have potential harmful effects on human health (the presence of azo group in the molecular structure of azo dyes has carcinogenic and mutagenic effects in the human health), thus, their detection in various food and beverage products became essential. This review presents the latest development in sensors design used for the determination of two commonly used azo dyes – tartrazine and sunset yellow in real food and beverage samples, revealing that there is a variety of efficient sensors with low limits of detection, wide linear concentration ranges, and high selectivities and sensitivities.

2019 ◽  
Vol 411 (28) ◽  
pp. 7539-7549 ◽  
Author(s):  
Quang Thuan Tran ◽  
Thi Tinh Phung ◽  
Quang Trung Nguyen ◽  
Truong Giang Le ◽  
Corinne Lagrost

2018 ◽  
Vol 42 (18) ◽  
pp. 14901-14908 ◽  
Author(s):  
Mahboobeh Ghorbani Ravandi ◽  
Mohammad Reza Fat’hi

In this study, a simple, fast and sensitive method called effervescence assisted dispersive liquid–liquid microextraction based on a hydrophobic deep eutectic solvent (EADLLME-DES) was used to extract synthetic dyes from food samples.


2020 ◽  
Vol 38 (3) ◽  
Author(s):  
Laís S. Porto ◽  
Daniela N. Silva ◽  
Ana Elisa F. de Oliveira ◽  
Arnaldo C. Pereira ◽  
Keyller B. Borges

AbstractIt is notorious that researches related to electrochemical sensors increased significantly due the promising characteristics that these devices present such as the possibility of obtaining information, with minimum manipulation of the studied system, in real time, and with low environmental impact. This article covers the carbon nanomaterials, presenting important aspects such as main properties, synthesis methods, and the application of these materials in the development of electrochemical sensors for the analysis of drugs and compounds of clinical interest. In this context, drug analysis is extremely important for quality control, to ensure that the medicine fulfills its role effectively without possible complications that could compromise the patient’s health and quality of life. In addition, analytical methods capable of determining compounds of clinical interest in biological fluids are extremely important for the indication of effective diagnoses. Thus, the versatility, selectivity, and portability of the electroanalytical techniques make the electrochemical sensors a favorite tool for the determination of drugs and compounds of clinical interest. It will be possible to follow in the present work that carbon nanomaterials have excellent thermal and electrical conductivity, strong adsorption capacity, high electrocatalytic effect, high biocompatibility, and high surface area. The possibility of formation of different composite materials based on carbonaceous nanomaterials that makes these materials promising for the development of analytical sensors, contributing to rapid, sensitive, and low-cost analyses can also be highlighted.


2016 ◽  
Vol 8 (48) ◽  
pp. 8466-8473 ◽  
Author(s):  
Jose A. Rodriguez ◽  
Israel S. Ibarra ◽  
Jose M. Miranda ◽  
Enrique Barrado ◽  
Eva M. Santos

A magnetic solid phase extraction method coupled to capillary electrophoresis for the simultaneous determination of three azo dyes (sunset yellow, allura red and tartrazine) in wastewater samples was proposed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 252
Author(s):  
Álvaro Terán-Alcocer ◽  
Francisco Bravo-Plascencia ◽  
Carlos Cevallos-Morillo ◽  
Alex Palma-Cando

Electrochemical sensors appear as low-cost, rapid, easy to use, and in situ devices for determination of diverse analytes in a liquid solution. In that context, conducting polymers are much-explored sensor building materials because of their semiconductivity, structural versatility, multiple synthetic pathways, and stability in environmental conditions. In this state-of-the-art review, synthetic processes, morphological characterization, and nanostructure formation are analyzed for relevant literature about electrochemical sensors based on conducting polymers for the determination of molecules that (i) have a fundamental role in the human body function regulation, and (ii) are considered as water emergent pollutants. Special focus is put on the different types of micro- and nanostructures generated for the polymer itself or the combination with different materials in a composite, and how the rough morphology of the conducting polymers based electrochemical sensors affect their limit of detection. Polypyrroles, polyanilines, and polythiophenes appear as the most recurrent conducting polymers for the construction of electrochemical sensors. These conducting polymers are usually built starting from bifunctional precursor monomers resulting in linear and branched polymer structures; however, opportunities for sensitivity enhancement in electrochemical sensors have been recently reported by using conjugated microporous polymers synthesized from multifunctional monomers.


Sign in / Sign up

Export Citation Format

Share Document