scholarly journals Carbon nanomaterials: synthesis and applications to development of electrochemical sensors in determination of drugs and compounds of clinical interest

2020 ◽  
Vol 38 (3) ◽  
Author(s):  
Laís S. Porto ◽  
Daniela N. Silva ◽  
Ana Elisa F. de Oliveira ◽  
Arnaldo C. Pereira ◽  
Keyller B. Borges

AbstractIt is notorious that researches related to electrochemical sensors increased significantly due the promising characteristics that these devices present such as the possibility of obtaining information, with minimum manipulation of the studied system, in real time, and with low environmental impact. This article covers the carbon nanomaterials, presenting important aspects such as main properties, synthesis methods, and the application of these materials in the development of electrochemical sensors for the analysis of drugs and compounds of clinical interest. In this context, drug analysis is extremely important for quality control, to ensure that the medicine fulfills its role effectively without possible complications that could compromise the patient’s health and quality of life. In addition, analytical methods capable of determining compounds of clinical interest in biological fluids are extremely important for the indication of effective diagnoses. Thus, the versatility, selectivity, and portability of the electroanalytical techniques make the electrochemical sensors a favorite tool for the determination of drugs and compounds of clinical interest. It will be possible to follow in the present work that carbon nanomaterials have excellent thermal and electrical conductivity, strong adsorption capacity, high electrocatalytic effect, high biocompatibility, and high surface area. The possibility of formation of different composite materials based on carbonaceous nanomaterials that makes these materials promising for the development of analytical sensors, contributing to rapid, sensitive, and low-cost analyses can also be highlighted.

Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1268 ◽  
Author(s):  
Álvaro Torrinha ◽  
Thiago M. B. F. Oliveira ◽  
Francisco W.P. Ribeiro ◽  
Adriana N. Correia ◽  
Pedro Lima-Neto ◽  
...  

Pharmaceuticals, as a contaminant of emergent concern, are being released uncontrollably into the environment potentially causing hazardous effects to aquatic ecosystems and consequently to human health. In the absence of well-established monitoring programs, one can only imagine the full extent of this problem and so there is an urgent need for the development of extremely sensitive, portable, and low-cost devices to perform analysis. Carbon-based nanomaterials are the most used nanostructures in (bio)sensors construction attributed to their facile and well-characterized production methods, commercial availability, reduced cost, high chemical stability, and low toxicity. However, most importantly, their relatively good conductivity enabling appropriate electron transfer rates—as well as their high surface area yielding attachment and extraordinary loading capacity for biomolecules—have been relevant and desirable features, justifying the key role that they have been playing, and will continue to play, in electrochemical (bio)sensor development. The present review outlines the contribution of carbon nanomaterials (carbon nanotubes, graphene, fullerene, carbon nanofibers, carbon black, carbon nanopowder, biochar nanoparticles, and graphite oxide), used alone or combined with other (nano)materials, to the field of environmental (bio)sensing, and more specifically, to pharmaceutical pollutants analysis in waters and aquatic species. The main trends of this field of research are also addressed.


2020 ◽  
Vol 3 (1) ◽  
pp. 55
Author(s):  
Ana M.B. Honorato ◽  
Mohd Khalid

Carbon materials are continuing in progress to accomplish the requirements of energy conversion and energy storage technologies because of their plenty in nature, high surface area, outstanding electrical properties, and readily obtained from varieties of chemical and natural sources. Recently, carbon-based electrocatalysts have been developed in the quest to replacement of noble metal based catalysts for low cost energy conversion technologies, such as fuel cell, water splitting, and metal-air batteries. Herein, we will present our short overview on recently developed carbon-based electrocatalysts for energy conversion reactions such as oxygen reduction, oxygen evolution, and hydrogen evolution reactions, along with challenges and perspectives in the emerging field of metal-free electrocatalysts.


2011 ◽  
Vol 312-315 ◽  
pp. 138-142
Author(s):  
A. Shokuhi Rad

Recently, several metal oxide nanomaterials have been deposited on the surface of electrodes and investigated for the reduction/ oxidation and detection of some biological materials. Electrochemical Sensors with high surface area and porosity are important components in an irresistible wealth of systems for various applications. An electrochemical sensor for the sensitive determination of parabromophenol (PBP) was synthesized based on the nano-SiO2 film-modified electrode. Owing to the exceptional properties of nano-SiO2 such as successfully minimized transport limitations, huge surface area, strong adsorptive ability, subtle electronic properties and catalytic ability, the electrochemical oxidation signal of PBP significantly increases at the nano- SiO2/GC electrochemical sensor, suggesting that nano-SiO2 film exhibits obvious enhancement effect to the determination of PBP. Based on this, a sensitive electrochemical method was developed for the determination of PBP.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Tiago Almeida Silva ◽  
Fernando Cruz Moraes ◽  
Bruno Campos Janegitz ◽  
Orlando Fatibello-Filho

Carbon black (CB) is a nanostructured material widely used in several industrial processes. This nanomaterial features a set of remarkable properties including high surface area, high thermal and electrical conductivity, and very low cost. Several studies have explored the applicability of CB in electrochemical fields. Recent data showed that modified electrodes based on CB present fast charge transfer and high electroactive surface area, comparable to carbon nanotubes and graphene. These characteristics make CB a promising candidate for the design of electrochemical sensors and biosensors. In this review, we highlight recent advances in the use of CB as a template for biosensing. As will be seen, we discuss the main biosensing strategies adopted for enzymatic catalysis for several target analytes, such as glucose, hydrogen peroxide, and environmental contaminants. Recent applications of CB on DNA-based biosensors are also described. Finally, future challenges and trends of CB use in bioanalytical chemistry are discussed.


2020 ◽  
Vol 17 ◽  
Author(s):  
Mandana Amiri ◽  
Hamideh Imanzadeh ◽  
Yasaman Sefid-Sefidehkhan

: Drug abuse considered a serious source of economic and social problems. The sensing of drugs of abuse is of demanding in forensic and clinical toxicology. There are many various methods for determination these materials using chromatographic and mass spectrometric techniques. Most of these techniques needs high-cost equipment, time consuming and suffer hard sample preparations. However, electrochemical methods are easy, simple and no need for complicated sample preparations cause to more interests of their use for determinations of toxics and pharmaceuticals. On the other hand, use of nanomaterials in electrochemistry found wide attentions to improve selectivity, sensitivity and limit of detections of various compounds such as pharmaceuticals, biologicals and environmental. Nanomaterials draw interests due to their low cost and unique size-dependent properties. The settling of nanomaterials into different matrices to prepare nanocomposite films founds wide interest. The unique properties of nanomaterials like mechanical, electrical, optical, catalytic and magnetic properties in addition of their significant high surface area per mass make them popular. Besides the novel properties, nanomaterials demonstrate new approaches to fabricate low cost electrodes by minimizing the materials needed and waste. The presence of nanotechnology beside modern electrochemical techniques helps to emerge of powerful, reliable electrical devices for sensing that shows benefits like increasing mass transport rate, high surface area and good control over electrode microenvironment. The aim of this review is to give an outline for the electrochemical determination based on nanomaterials of the commonly occurring illicit drugs in a various matrices such as urine, blood and saliva, which are important for determining of drugs of abuse.


2020 ◽  
Vol 16 (8) ◽  
pp. 1032-1040
Author(s):  
Laleh Samini ◽  
Maryam Khoubnasabjafari ◽  
Mohamad M. Alimorad ◽  
Vahid Jouyban-Gharamaleki ◽  
Hak-Kim Chan ◽  
...  

Background: Analysis of drug concentrations in biological fluids is required in clinical sciences for various purposes. Among other biological samples, exhaled breath condensate (EBC) is a potential sample for follow up of drug concentrations. Methods: A dispersive liquid-liquid microextraction (DLLME) procedure followed by a validated liquid chromatography method was employed for the determination of budesonide (BDS) in EBC samples collected using a homemade setup. EBC is a non-invasive biological sample with possible applications for monitoring drug concentrations. The proposed analytical method is validated according to the FDA guidelines using EBC-spiked samples. Its applicability is tested on EBC samples collected from healthy volunteers receiving a single puff of BDS. Results: The best DLLME conditions involved the use of methanol (1 mL) as a disperser solvent, chloroform (200 μL) as an extraction solvent, and centrifugation rate of 3500 rpm for 5 minutes. The method was validated over a concentration range of 21-210 μg·L-1 in EBC. Inter- and intra-day precisions were less than 10% where the acceptable levels are less than 20%. The validated method was successfully applied for the determination of BDS in EBC samples. Conclusion: The findings of this study indicate that the developed method can be used for the extraction and quantification of BDS in EBC samples using a low cost method.


RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20601-20611
Author(s):  
Md. Mijanur Rahman ◽  
Kenta Inaba ◽  
Garavdorj Batnyagt ◽  
Masato Saikawa ◽  
Yoshiki Kato ◽  
...  

Herein, we demonstrated that carbon-supported platinum (Pt/C) is a low-cost and high-performance electrocatalyst for polymer electrolyte fuel cells (PEFCs).


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 657
Author(s):  
Geul Han Kim ◽  
Yoo Sei Park ◽  
Juchan Yang ◽  
Myeong Je Jang ◽  
Jaehoon Jeong ◽  
...  

Developing high performance, highly stable, and low-cost electrodes for the oxygen evolution reaction (OER) is challenging in water electrolysis technology. However, Ir- and Ru-based OER catalysts with high OER efficiency are difficult to commercialize as precious metal-based catalysts. Therefore, the study of OER catalysts, which are replaced by non-precious metals and have high activity and stability, are necessary. In this study, a copper–cobalt oxide nanosheet (CCO) electrode was synthesized by the electrodeposition of copper–cobalt hydroxide (CCOH) on Ni foam followed by annealing. The CCOH was annealed at various temperatures, and the structure changed to that of CCO at temperatures above 250 °C. In addition, it was observed that the nanosheets agglomerated when annealed at 300 °C. The CCO electrode annealed at 250 °C had a high surface area and efficient electron conduction pathways as a result of the direct growth on the Ni foam. Thus, the prepared CCO electrode exhibited enhanced OER activity (1.6 V at 261 mA/cm2) compared to those of CCOH (1.6 V at 144 mA/cm2), Co3O4 (1.6 V at 39 mA/cm2), and commercial IrO2 (1.6 V at 14 mA/cm2) electrodes. The optimized catalyst also showed high activity and stability under high pH conditions, demonstrating its potential as a low cost, highly efficient OER electrode material.


Author(s):  
Marcel Simsek ◽  
Nongnoot Wongkaew

AbstractNon-enzymatic electrochemical sensors possess superior stability and affordability in comparison to natural enzyme-based counterparts. A large variety of nanomaterials have been introduced as enzyme mimicking with appreciable sensitivity and detection limit for various analytes of which glucose and H2O2 have been mostly investigated. The nanomaterials made from noble metal, non-noble metal, and metal composites, as well as carbon and their derivatives in various architectures, have been extensively proposed over the past years. Three-dimensional (3D) transducers especially realized from the hybrids of carbon nanomaterials either with metal-based nanocatalysts or heteroatom dopants are favorable owing to low cost, good electrical conductivity, and stability. In this critical review, we evaluate the current strategies to create such nanomaterials to serve as non-enzymatic transducers. Laser writing has emerged as a powerful tool for the next generation of devices owing to their low cost and resultant remarkable performance that are highly attractive to non-enzymatic transducers. So far, only few works have been reported, but in the coming years, more and more research on this topic is foreseeable. Graphical abstract


2021 ◽  
Vol 17 ◽  
Author(s):  
Linyu Wang ◽  
Shasha Hong ◽  
Yuxi Yang ◽  
Yonghai Song ◽  
Li Wang

Background: In recent years, electrochemical sensors are widely preferred because of their high sensitivity, rapid response, low cost and easy miniaturization. Covalent organic frameworks (COFs), a porous crystalline polymer formed by organic units connected by covalent bonds, have been widely used in gas adsorption and separation, drug transportation, energy storage, photoelectric catalysis, electrochemistry and other aspects due to their large specific surface, excellent stability, high inherent porosity, good crystallinity as well as structural and functional controllability. The topological structure of COFs can be designed in advance, the structural units and linkage are diversified, and the structure is easy to be functionalized, which are all beneficial to their application in electrochemical sensors. Methods: The types, synthesis methods, properties of covalent organic frameworks and some examples of using covalent organic frameworks in electrochemical sensors are reviewed. Results: Due to their characteristics of a large specific surface, high porosity, orderly channel and periodically arranged π electron cloud, COFs are often used to immobilize metal nanoparticles, aptamers or other materials to achieve the purpose of building electrochemical sensors with high sensitivity and good stability. Since the structure of COFs can be predicted, different organic units can build COFs with different structures and properties. Therefore, organic units with certain functional groups can be selected to build COFs with certain properties and used directly for electrochemical sensors. Conclusion: COFs have a good application prospect in electrochemical sensors.


Sign in / Sign up

Export Citation Format

Share Document