scholarly journals Fabrication of High Performing PEMFC Catalyst-Coated Membranes with a Low Cost Air-Assisted Cylindrical Liquid Jets Spraying System

2016 ◽  
Vol 163 (14) ◽  
pp. E407-E413 ◽  
Author(s):  
Xiong Peng ◽  
Travis Omasta ◽  
William Rigdon ◽  
William E. Mustain
Author(s):  
Antonia Perju ◽  
Nongnoot Wongkaew

AbstractLateral flow assays (LFAs) are the best-performing and best-known point-of-care tests worldwide. Over the last decade, they have experienced an increasing interest by researchers towards improving their analytical performance while maintaining their robust assay platform. Commercially, visual and optical detection strategies dominate, but it is especially the research on integrating electrochemical (EC) approaches that may have a chance to significantly improve an LFA’s performance that is needed in order to detect analytes reliably at lower concentrations than currently possible. In fact, EC-LFAs offer advantages in terms of quantitative determination, low-cost, high sensitivity, and even simple, label-free strategies. Here, the various configurations of EC-LFAs published are summarized and critically evaluated. In short, most of them rely on applying conventional transducers, e.g., screen-printed electrode, to ensure reliability of the assay, and additional advances are afforded by the beneficial features of nanomaterials. It is predicted that these will be further implemented in EC-LFAs as high-performance transducers. Considering the low cost of point-of-care devices, it becomes even more important to also identify strategies that efficiently integrate nanomaterials into EC-LFAs in a high-throughput manner while maintaining their favorable analytical performance.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Anastasios I. Tsiotsias ◽  
Nikolaos D. Charisiou ◽  
Ioannis V. Yentekakis ◽  
Maria A. Goula

CO2 methanation has recently emerged as a process that targets the reduction in anthropogenic CO2 emissions, via the conversion of CO2 captured from point and mobile sources, as well as H2 produced from renewables into CH4. Ni, among the early transition metals, as well as Ru and Rh, among the noble metals, have been known to be among the most active methanation catalysts, with Ni being favoured due to its low cost and high natural abundance. However, insufficient low-temperature activity, low dispersion and reducibility, as well as nanoparticle sintering are some of the main drawbacks when using Ni-based catalysts. Such problems can be partly overcome via the introduction of a second transition metal (e.g., Fe, Co) or a noble metal (e.g., Ru, Rh, Pt, Pd and Re) in Ni-based catalysts. Through Ni-M alloy formation, or the intricate synergy between two adjacent metallic phases, new high-performing and low-cost methanation catalysts can be obtained. This review summarizes and critically discusses recent progress made in the field of bimetallic Ni-M (M = Fe, Co, Cu, Ru, Rh, Pt, Pd, Re)-based catalyst development for the CO2 methanation reaction.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 942
Author(s):  
Razvan Pascu ◽  
Gheorghe Pristavu ◽  
Gheorghe Brezeanu ◽  
Florin Draghici ◽  
Philippe Godignon ◽  
...  

A SiC Schottky dual-diode temperature-sensing element, suitable for both complementary variation of VF with absolute temperature (CTAT) and differential proportional to absolute temperature (PTAT) sensors, is demonstrated over 60–700 K, currently the widest range reported. The structure’s layout places the two identical diodes in close, symmetrical proximity. A stable and high-barrier Schottky contact based on Ni, annealed at 750 °C, is used. XRD analysis evinced the even distribution of Ni2Si over the entire Schottky contact area. Forward measurements in the 60–700 K range indicate nearly identical characteristics for the dual-diodes, with only minor inhomogeneity. Our parallel diode (p-diode) model is used to parameterize experimental curves and evaluate sensing performances over this far-reaching domain. High sensitivity, upwards of 2.32 mV/K, is obtained, with satisfactory linearity (R2 reaching 99.80%) for the CTAT sensor, even down to 60 K. The PTAT differential version boasts increased linearity, up to 99.95%. The lower sensitivity is, in this case, compensated by using a high-performing, low-cost readout circuit, leading to a peak 14.91 mV/K, without influencing linearity.


2021 ◽  
Vol 60 (1) ◽  
pp. 237-275
Author(s):  
Krushna Gouda ◽  
Sumit Bhowmik ◽  
Biplab Das

Abstract The scarcity of nonrenewable resource motivated inclination towards the environmental-friendly novel materials and development of waste natural filler-based hybrid composite is encouraged to fulfill the material demand. Epoxy resins-based composites are high-performing thermosetting polymers and have outstanding blending properties, good machinability, and low cost. Due to these advantages, thermoset plastic is largely used in a broad range of engineering applications; however, thermomechanical properties of neat epoxy are low. Thus, to enhance the thermomechanical properties of epoxy, it is interfaced materials such as graphite, graphene nanoplatelet, boron, carbon fiber, aluminium, silver, etc. Among various substances, graphene has been deliberated as an acceptable novel filler because of its exceptional properties. In addition to inorganic filler inclusion, natural filler/fiber like hemp, sisal, flax, bamboo, jute, etc. can be utilized in a higher percentage as biodegradable material. The present article assisted to improve thermomechanical properties of neat epoxy. This work identifies and addresses (i) processes used for graphene modification; (ii) treatment utilized for enhancing the binding properties of natural filler; (iii) various natural filler extraction process employed; (iv) neat epoxy modification; and (v) influence of different dimensions of fillers.


Procedia CIRP ◽  
2021 ◽  
Vol 104 ◽  
pp. 1389-1394
Author(s):  
Agusmian Partogi Ompusunggu ◽  
Kerem Eryılmaz ◽  
Karel Janssen

Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1084 ◽  
Author(s):  
Amjid Rafique ◽  
Usman Zubair ◽  
Mara Serrapede ◽  
Marco Fontana ◽  
Stefano Bianco ◽  
...  

Emerging technologies, such as portable electronics, have had a huge impact on societal norms, such as access to real time information. To perform these tasks, portable electronic devices need more and more accessories for the processing and dispensation of the data, resulting in higher demand for energy and power. To overcome this problem, a low cost high-performing flexible fiber shaped asymmetric supercapacitor was fabricated, exploiting 3D-spinel manganese oxide Mn3O4 as cathode and 2D molybdenum disulfide MoS2 as anode. These asymmetric supercapacitors with stretched operating voltage window of 1.8 V exhibit high specific capacitance and energy density, good rate capability and cyclic stability after 3000 cycles, with a capacitance retention of more than 80%. This device has also shown an excellent bending stability at different bending conditions.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3884
Author(s):  
Loanda R. Cumba ◽  
Adalberto Camisasca ◽  
Silvia Giordani ◽  
Robert J. Forster

The properties of carbon nano-onions (CNOs) make them attractive electrode materials/additives for the development of low-cost, simple to use and highly sensitive Screen Printed Electrodes (SPEs). Here, we report the development of the first CNO-based ink for the fabrication of low-cost and disposable electrodes, leading to high-performance sensors. Achieving a true dispersion of CNOs is intrinsically challenging and a key aspect of the ink formulation. The screen-printing ink formulation is achieved by carefully selecting and optimising the conductive materials (graphite (GRT) and CNOs), the polymer binder, the organic solvent and the plasticiser. Our CNO/GRT-based screen-printed electrodes consist of an interconnected network of conducting carbon particles with a uniform distribution. Electrochemical studies show a heterogeneous electron transfer rate constant of 1.3 ± 0.7 × 10−3 cm·s−1 and a higher current density than the ferrocene/ferrocenium coupled to a commercial graphite SPEs. In addition, the CNO/GRT SPE can detect dopamine in the concentration range of 10.0–99.9 µM with a limit of detection of 0.92 µM (N = 3). They exhibit a higher analytical sensitivity than the commercial graphite-based SPE, with a 4-fold improvement observed. These results open up the possibility of using high-performing CNO-based SPEs for electrochemical applications including sensors, battery electrodes and electrocatalysis.


Author(s):  
Alessandro Mansutti ◽  
Mario Covarrubias Rodriguez ◽  
Monica Bordegoni ◽  
Umberto Cugini

This paper presents a new concept of a desktop tangible shape display for virtual surface rendering. The proposed system is able to represent in the real environment the shape of a digital model of a product, which can be explored naturally through a free-hand interaction. Aim of the shape display is to allow product designers to explore the rendered surface through a continuous touch of curves lying on the product shape. Ideally, the designer selects curves, which can be considered as style features of the shape, on the shape surface, and evaluates the aesthetic quality of these curves by manual exploration. In order to physically represent these selected curves, a flexible surface is modelled by means of servo-actuated modules controlling a physical deforming strip. The behaviour of the strip is controlled by acting on the position and rotations of a discrete number of control sectors. Each control sector is controlled by a module, which is based on an absolute positioning approach and equipped with five degrees of freedom. The developed system is able to manage the elastic behaviour of the strip in terms of bending, twisting and local tangency. The tangency control allows us to manage the local tangency of the strip to the rendered trajectory, thus increasing the accuracy of the representation. Moreover, a preliminary second version of the module is presented, which has been designed so as to allow the control sectors to slide on the strip. Thanks to this feature, it will be possible to place the control sector in a given point of the trajectory, such as point of maximum, point of minimum or inflection points. The device is designed to be portable, low cost, modular and high performing in terms of types of shapes that can be represented. A prototype equipped with three modules has been developed in order to evaluate the usability and the performances of the display.


2019 ◽  
Author(s):  
Davide Bolognini ◽  
Niccolò Bartalucci ◽  
Alessandra Mingrino ◽  
Alessandro Maria Vannucchi ◽  
Alberto Magi

AbstractMinION and GridION X5 from Oxford Nanopore Technologies are devices for real-time DNA and RNA sequencing. On the one hand, MinION is the only real-time, low cost and portable sequencing device and, thanks to its unique properties, is becoming more and more popular among biologists; on the other, GridION X5, mainly for its costs, is less widespread but highly suitable for researchers with large sequencing projects. Despite the fact that Oxford Nanopore Technologies’ devices have been increasingly used in the last few years, there is a lack of high-performing and user-friendly tools to handle the data outputted by both MinION and GridION X5 platforms. Here we present NanoR, a cross-platform R package designed with the purpose to simplify and improve nanopore data visualization. Indeed, NanoR is built on few functions but overcomes the capabilities of existing tools to extract meaningful informations from MinION sequencing data; in addition, as exclusive features, NanoR can deal with GridION X5 sequencing outputs and allows comparison of both MinION and GridION X5 sequencing data in one command. NanoR is released as free package for R at https://github.com/davidebolo1993/NanoR.


2021 ◽  
Author(s):  
Andrew M. Biedermann ◽  
Isabella R. Gengaro ◽  
Sergio A. Rodriguez-Aponte ◽  
Kerry R. Love ◽  
J. Christopher Love

AbstractDeveloping media to sustain cell growth and production is an essential and ongoing activity in bioprocess development. Modifications to media can often address host or product-specific challenges, such as low productivity or poor product quality. For other applications, systematic design of new media can facilitate the adoption of new industrially relevant alternative hosts. Despite manifold existing methods, common approaches for optimization often remain time and labor intensive. We present here a novel approach to conventional media blending that leverages stable, simple, concentrated stock solutions to enable rapid improvement of measurable phenotypes of interest. We applied this modular methodology to generate high-performing media for two phenotypes of interest: biomass accumulation and heterologous protein production, using high-throughput, milliliter-scale batch fermentations of Pichia pastoris as a model system. In addition to these examples, we also created a flexible open-source package for modular blending automation on a low-cost liquid handling system to facilitate wide use of this method. Our modular blending method enables rapid, flexible media development, requiring minimal labor investment and prior knowledge of the host organism, and should enable developing improved media for other hosts and phenotypes of interest.


Sign in / Sign up

Export Citation Format

Share Document