scholarly journals A review on allotropes of carbon and natural filler-reinforced thermomechanical properties of upgraded epoxy hybrid composite

2021 ◽  
Vol 60 (1) ◽  
pp. 237-275
Author(s):  
Krushna Gouda ◽  
Sumit Bhowmik ◽  
Biplab Das

Abstract The scarcity of nonrenewable resource motivated inclination towards the environmental-friendly novel materials and development of waste natural filler-based hybrid composite is encouraged to fulfill the material demand. Epoxy resins-based composites are high-performing thermosetting polymers and have outstanding blending properties, good machinability, and low cost. Due to these advantages, thermoset plastic is largely used in a broad range of engineering applications; however, thermomechanical properties of neat epoxy are low. Thus, to enhance the thermomechanical properties of epoxy, it is interfaced materials such as graphite, graphene nanoplatelet, boron, carbon fiber, aluminium, silver, etc. Among various substances, graphene has been deliberated as an acceptable novel filler because of its exceptional properties. In addition to inorganic filler inclusion, natural filler/fiber like hemp, sisal, flax, bamboo, jute, etc. can be utilized in a higher percentage as biodegradable material. The present article assisted to improve thermomechanical properties of neat epoxy. This work identifies and addresses (i) processes used for graphene modification; (ii) treatment utilized for enhancing the binding properties of natural filler; (iii) various natural filler extraction process employed; (iv) neat epoxy modification; and (v) influence of different dimensions of fillers.

Author(s):  
Antonia Perju ◽  
Nongnoot Wongkaew

AbstractLateral flow assays (LFAs) are the best-performing and best-known point-of-care tests worldwide. Over the last decade, they have experienced an increasing interest by researchers towards improving their analytical performance while maintaining their robust assay platform. Commercially, visual and optical detection strategies dominate, but it is especially the research on integrating electrochemical (EC) approaches that may have a chance to significantly improve an LFA’s performance that is needed in order to detect analytes reliably at lower concentrations than currently possible. In fact, EC-LFAs offer advantages in terms of quantitative determination, low-cost, high sensitivity, and even simple, label-free strategies. Here, the various configurations of EC-LFAs published are summarized and critically evaluated. In short, most of them rely on applying conventional transducers, e.g., screen-printed electrode, to ensure reliability of the assay, and additional advances are afforded by the beneficial features of nanomaterials. It is predicted that these will be further implemented in EC-LFAs as high-performance transducers. Considering the low cost of point-of-care devices, it becomes even more important to also identify strategies that efficiently integrate nanomaterials into EC-LFAs in a high-throughput manner while maintaining their favorable analytical performance.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Anastasios I. Tsiotsias ◽  
Nikolaos D. Charisiou ◽  
Ioannis V. Yentekakis ◽  
Maria A. Goula

CO2 methanation has recently emerged as a process that targets the reduction in anthropogenic CO2 emissions, via the conversion of CO2 captured from point and mobile sources, as well as H2 produced from renewables into CH4. Ni, among the early transition metals, as well as Ru and Rh, among the noble metals, have been known to be among the most active methanation catalysts, with Ni being favoured due to its low cost and high natural abundance. However, insufficient low-temperature activity, low dispersion and reducibility, as well as nanoparticle sintering are some of the main drawbacks when using Ni-based catalysts. Such problems can be partly overcome via the introduction of a second transition metal (e.g., Fe, Co) or a noble metal (e.g., Ru, Rh, Pt, Pd and Re) in Ni-based catalysts. Through Ni-M alloy formation, or the intricate synergy between two adjacent metallic phases, new high-performing and low-cost methanation catalysts can be obtained. This review summarizes and critically discusses recent progress made in the field of bimetallic Ni-M (M = Fe, Co, Cu, Ru, Rh, Pt, Pd, Re)-based catalyst development for the CO2 methanation reaction.


2021 ◽  
Vol 2 (2) ◽  
pp. 325-334
Author(s):  
Neda Javadi ◽  
Hamed Khodadadi Tirkolaei ◽  
Nasser Hamdan ◽  
Edward Kavazanjian

The stability (longevity of activity) of three crude urease extracts was evaluated in a laboratory study as part of an effort to reduce the cost of urease for applications that do not require high purity enzyme. A low-cost, stable source of urease will greatly facilitate engineering applications of urease such as biocementation of soil. Inexpensive crude extracts of urease have been shown to be effective at hydrolyzing urea for carbonate precipitation. However, some studies have suggested that the activity of a crude extract may decrease with time, limiting the potential for its mass production for commercial applications. The stability of crude urease extracts shown to be effective for biocementation was studied. The crude extracts were obtained from jack beans via a simple extraction process, stored at room temperature and at 4 ℃, and periodically tested to evaluate their stability. To facilitate storage and transportation of the extracted enzyme, the longevity of the enzyme following freeze drying (lyophilization) to reduce the crude extract to a powder and subsequent re-hydration into an aqueous solution was evaluated. In an attempt to improve the shelf life of the lyophilized extract, dextran and sucrose were added during lyophilization. The stability of purified commercial urease following rehydration was also investigated. Results of the laboratory tests showed that the lyophilized crude extract maintained its activity during storage more effectively than either the crude extract solution or the rehydrated commercial urease. While incorporating 2% dextran (w/v) prior to lyophilization of the crude extract increased the overall enzymatic activity, it did not enhance the stability of the urease during storage.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 942
Author(s):  
Razvan Pascu ◽  
Gheorghe Pristavu ◽  
Gheorghe Brezeanu ◽  
Florin Draghici ◽  
Philippe Godignon ◽  
...  

A SiC Schottky dual-diode temperature-sensing element, suitable for both complementary variation of VF with absolute temperature (CTAT) and differential proportional to absolute temperature (PTAT) sensors, is demonstrated over 60–700 K, currently the widest range reported. The structure’s layout places the two identical diodes in close, symmetrical proximity. A stable and high-barrier Schottky contact based on Ni, annealed at 750 °C, is used. XRD analysis evinced the even distribution of Ni2Si over the entire Schottky contact area. Forward measurements in the 60–700 K range indicate nearly identical characteristics for the dual-diodes, with only minor inhomogeneity. Our parallel diode (p-diode) model is used to parameterize experimental curves and evaluate sensing performances over this far-reaching domain. High sensitivity, upwards of 2.32 mV/K, is obtained, with satisfactory linearity (R2 reaching 99.80%) for the CTAT sensor, even down to 60 K. The PTAT differential version boasts increased linearity, up to 99.95%. The lower sensitivity is, in this case, compensated by using a high-performing, low-cost readout circuit, leading to a peak 14.91 mV/K, without influencing linearity.


2021 ◽  
pp. 002199832110526
Author(s):  
Beibei Jia ◽  
Yuqing Chen ◽  
Chengxiang Chen ◽  
Yongfei Li ◽  
Wanli Ma ◽  
...  

The inorganic filler can modify the electrical and dielectric properties of polymeric composites. However, it is challenging to understand the local charge injection and dissipation in composites through traditional characterization at nanoscale. In this work, we provide a potential mapping of the charge injection and dissipation in the local area of graphene oxide/epoxy resin (GO/EP) composite under various biases by Kelvin probe force microscopy (KPFM) with high spatial resolution. Thus, an improved KPFM experimental setup is used to inject charges at the fixed point to demonstrate surface charge dissipation around the interface between GO and EP. It is found that the charge is more easily injected into the GO/EP nanocomposites and dissipates more quickly in nanocomposite than in neat epoxy resins. Meanwhile, the electrons diffuse more rapidly than holes in pure EP and nanocomposites. The faster charge injection and dissipation of GO/EP composite are ascribed to the filler of GO which has much higher conductivity than that of neat epoxy. This work offers significant insights into the understanding of charge injection and dissipation in dielectric composites.


Procedia CIRP ◽  
2021 ◽  
Vol 104 ◽  
pp. 1389-1394
Author(s):  
Agusmian Partogi Ompusunggu ◽  
Kerem Eryılmaz ◽  
Karel Janssen

2020 ◽  
Vol 32 (6) ◽  
pp. 1321-1328
Author(s):  
Priyabrata Mohanty ◽  
Dibakar Behera ◽  
Shiv kumari Panda ◽  
Tapan Kumar Bastia ◽  
Prasanta Rath

The development of an inter-cross-linked polymer network of thermoset-thermoset blends have been extensively studied due to their enhanced mechanical properties. Among various polymer blends, modifications of unsaturated polyester (UPE) resin with epoxidized soybean oil acrylate (ESOA) combinations are an attractive route to promote the performance of the thermoset matrix and to overcome the inferior properties of both the components. Biodegradable and effectively accessible chitosan biodegradable waste material can shape the new stage for cutting-edge innovation items. Blend of both recyclable fibrous reinforcement and eco-friendly filler with two miscible thermosetting polymers will provide enhanced properties. At this time, chitosan up to 15 wt% (based on matrix weight) was utilized as reinforcing filler. At last, an interesting result was built up by confirming that chitosan filled chemically tailored bamboo and UPE/ESOA (80:20) biocomposites offered enhanced properties by 10 wt% of filler concentration with the most enhancements in whole properties. They have extensive variety of applications in the sector of low cost housing, structural projects and structural laminates.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 265
Author(s):  
Natalia Sienkiewicz ◽  
Midhun Dominic ◽  
Jyotishkumar Parameswaranpillai

Epoxy resins as important organic matrices, thanks to their chemical structure and the possibility of modification, have unique properties, which contribute to the fact that these materials have been used in many composite industries for many years. Epoxy resins are repeatedly used in exacting applications due to their exquisite mechanical properties, thermal stability, scratch resistance, and chemical resistance. Moreover, epoxy materials also have really strong resistance to solvents, chemical attacks, and climatic aging. The presented features confirm the fact that there is a constant interest of scientists in the modification of resins and understanding its mechanisms, as well as in the development of these materials to obtain systems with the required properties. Most of the recent studies in the literature are focused on green fillers such as post-agricultural waste powder (cashew nuts powder, coconut shell powder, rice husks, date seed), grass fiber (bamboo fibers), bast/leaf fiber (hemp fibers, banana bark fibers, pineapple leaf), and other natural fibers (waste tea fibers, palm ash) as reinforcement for epoxy resins rather than traditional non-biodegradable fillers due to their sustainability, low cost, wide availability, and the use of waste, which is environmentally friendly. Furthermore, the advantages of natural fillers over traditional fillers are acceptable specific strength and modulus, lightweight, and good biodegradability, which is very desirable nowadays. Therefore, the development and progress of “green products” based on epoxy resin and natural fillers as reinforcements have been increasing. Many uses of natural plant-derived fillers include many plant wastes, such as banana bark, coconut shell, and waste peanut shell, can be found in the literature. Partially biodegradable polymers obtained by using natural fillers and epoxy polymers can successfully reduce the undesirable epoxy and synthetic fiber waste. Additionally, partially biopolymers based on epoxy resins, which will be presented in the paper, are more useful than commercial polymers due to the low cost and improved good thermomechanical properties.


2020 ◽  
Author(s):  
Jeffrey Sanders ◽  
Carla E. Estridge ◽  
Matthew B Jackson ◽  
Thomas JL Mustard ◽  
Samuel J. Tucker ◽  
...  

Thermoset polymers are an area of intense research due to their low cost, ease of processing, environmental resistance, and unique physical properties. The favorable properties of this class of polymers have many applications in aerospace, automotive, marine, and sports equipment industries. Molecular simulations of thermosets are frequently used to model formation of the polymer network, and to predict the thermomechanical properties. These simulations usually require custom algorithms that are not easily accessible to non-experts and not suited for high throughput screening. To address these issues, we have developed a robust cross-linking algorithm that can incorporate different types of chemistries and leverage GPU-enabled molecular dynamics simulations. Automated simulation analysis tools for cross-linking simulations are also presented. Using four well known epoxy/amine formulations as a foundational case study and benzoxazine as an example of how additional chemistries can be modeled, we demonstrate the power of the algorithm to accurately predict curing and thermophysical properties. These tools are able to streamline the thermoset simulation process, opening up avenues to in-silico high throughput screening for advanced material development.


Sign in / Sign up

Export Citation Format

Share Document