Reliable Determination of Surface Exchange and Bulk Diffusion Coefficients of La2NiO4+Δ Cathode Materials for SOFC

Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1240
Author(s):  
Fuyao Yan ◽  
Yiheng Wang ◽  
Ying Yang ◽  
Lei Zhu ◽  
Hui Hu ◽  
...  

Surface exchange coefficient (k) and bulk diffusion coefficient (D) are important properties to evaluate the performance of mixed ionic-electronic conducting (MIEC) ceramic oxides for use in energy conversion devices, such as solid oxide fuel cells. The values of k and D are usually estimated by a non-linear curve fitting procedure based on electrical conductivity relaxation (ECR) measurement. However, the rate-limiting mechanism (or the availability of k and D) and the experimental imperfections (such as flush delay for gaseous composition change, τf) are not reflected explicitly in the time–domain ECR data, and the accuracy of k and D demands a careful sensitivity analysis of the fitting error. Here, the distribution of characteristic times (DCT) converted from time–domain ECR data is proposed to overcome the above challenges. It is demonstrated that, from the DCT spectrum, the rate-limiting mechanism and the effect of τf are easily recognized, and the values of k, D and τf can be determined conjunctly. A strong robustness of determination of k and D is verified using noise-containing ECR data. The DCT spectrum opens up a way towards visible and credible determination of kinetic parameters of MIEC ceramic oxides.


2019 ◽  
Vol 28 (11) ◽  
pp. 71-80 ◽  
Author(s):  
Cornelia Endler ◽  
André Leonide ◽  
Bernd Rüger ◽  
André Weber ◽  
Ellen Ivers-Tiffée

1998 ◽  
Vol 548 ◽  
Author(s):  
N.I. Joos ◽  
P.A.W. van der Heide ◽  
J.R. Liu ◽  
R. Christoffersen ◽  
W.K. Chu ◽  
...  

ABSTRACTIsotope exchange with C18O2 followed by depth profiling analysis was used to study surface exchange and bulk diffusion of oxygen in single crystal ((100) surface orientation) yttria-stabilized zirconia (YSZ) in the temperature range 250°C - 350°C. The depth profiles, which were obtained using 18O(ρ,α)15N nuclear reaction analysis (NRA) and secondary ion mass spectrometry (SIMS), reveal both the bulk oxygen diffusion coefficients (D) and surface exchange coefficients (k). Bulk oxygen diffusion coefficients are consistent with an extrapolation to lower temperature of previously published results with an activation energy of 114 kJ/mol (1.2 eV). The surface exchange rates, however, depend strongly on the gas exchange species. Much higher exchange rates are observed with C18O2 than with 18O2 (over four orders of magnitude when compared to an extrapolation to lower temperatures of previously published results) with a measured activation energy of 152 kJ/mol (1.6 eV). This faster surface exchange rate enabled measurable 18O tracer profiles to be generated at lower temperatures than previously reported, further contributing to the understanding of YSZ material properties and bringing to light a possible order/disorder transition similar to that previously observed at 650°C.


Dispersion in laminar flow was studied by a method proposed by Aris based on the use of moments. The first four moments for different types of pulses are calculated in the present paper. The solution was applied to the determination of the diffusivities of hydrogen and nitrobenzoic acid in water, and the results obtained are compared with those found by Taylor’s method of analysis. Some criteria for reliable determination of diffusion coefficients are given. The experiments were performed in coiled tubes, and the influence of the curvature of the tube is discussed


2001 ◽  
Vol 120 (5) ◽  
pp. A599-A599
Author(s):  
C ARNOLD ◽  
A GOEL ◽  
J CARETHERS ◽  
L WASSERMAN ◽  
C COMPTON ◽  
...  

2013 ◽  
Vol 12 (7) ◽  
pp. 460-465
Author(s):  
Sameer Amereih ◽  
Zaher Barghouthi ◽  
Lamees Majjiad

A sensitive colorimetric determination of fluoride in drinking water has been developed using a polymeric zirconium complex of 5-(2-Carboxyphenylazo)-8-Hydroxyquinoline as fluoride reagents. The method allowed a reliable determination of fluoride in range of (0.0-1.5) mg L-1. The molar absorptivity of the complex formation is 7695 ± 27 L mol-1 cm-1 at 460 nm. The sensitivity, detection limit, quantitation limit, and percentage recovery for 1.0 mg L-1 fluoride for the proposed method were found to be 0.353 ± 0.013 μg mL-1, 0.1 mg L-1, 0.3 mg L-1, and 101.7 ± 4.1, respectively.


2019 ◽  
Vol 70 (11) ◽  
pp. 3903-3907
Author(s):  
Galina Marusic ◽  
Valeriu Panaitescu

The paper deals with the issues related to the pollution of aquatic ecosystems. The influence of turbulence on the transport and dispersion of pollutants in the mentioned systems, as well as the calculation of the turbulent diffusion coefficients are studied. A case study on the determination of turbulent diffusion coefficients for some sectors of the Prut River is presented. A new method is proposed for the determination of the turbulent diffusion coefficients in the pollutant transport equation for specific sectors of a river, according to the associated number of P�clet, calculated for each specific area: the left bank, the right bank and the middle of the river.


Biosensors ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 153
Author(s):  
Georgios Koukouvinos ◽  
Chrysoula-Evangelia Karachaliou ◽  
Ioannis Raptis ◽  
Panagiota Petrou ◽  
Evangelia Livaniou ◽  
...  

Carbendazim is a systemic benzimidazole-type fungicide with broad-spectrum activity against fungi that undermine food products safety and quality. Despite its effectiveness, carbendazim constitutes a major environmental pollutant, being hazardous to both humans and animals. Therefore, fast and reliable determination of carbendazim levels in water, soil, and food samples is of high importance for both food industry and public health. Herein, an optical biosensor based on white light reflectance spectroscopy (WLRS) for fast and sensitive determination of carbendazim in fruit juices is presented. The transducer is a Si/SiO2 chip functionalized with a benzimidazole conjugate, and determination is based on a competitive immunoassay format. Thus, for the assay, a mixture of an in-house developed rabbit polyclonal anti-carbendazim antibody with the standards or samples is pumped over the chip, followed by biotinylated secondary antibody and streptavidin. The WLRS platform allows for real-time monitoring of biomolecular interactions carried out onto the Si/SiO2 chip by transforming the shift in the reflected interference spectrum caused by the immunoreaction to effective biomolecular adlayer thickness. The sensor is able to detect 20 ng/mL of carbendazim in fruit juices with high accuracy and precision (intra- and inter-assay CVs ≤ 6.9% and ≤9.4%, respectively) in less than 30 min, applying a simple sample treatment that alleviates any “matrix-effect” on the assay results and a 60 min preincubation step for improving assay sensitivity. Excellent analytical characteristics and short analysis time along with its small size render the proposed WLRS immunosensor ideal for future on-the-spot determination of carbendazim in food and environmental samples.


Sign in / Sign up

Export Citation Format

Share Document