scholarly journals A remote laboratory course on experimental human physiology using wearable technology

Author(s):  
Patrick Mayerhofer ◽  
James Carter ◽  
J. Maxwell Donelan

To help educators deliver their physiology laboratory courses remotely, we developed an inexpensive, customizable hardware kit along with freely-available teaching resources. We based the course design on four principles that should allow students to conduct insightful experiments on different physiological systems. First, the experimental setup should not be constrained to laboratory environments. Second, students should be able to take this course without prior coding and electronics experience. Third, the hardware kit should be relatively inexpensive and all other resources should be freely-available. Fourth, all resources should be customizable for educators. The hardware kit consists of commercially-available electronic components, with a microcontroller as its hub (Arduino-friendly). All measurement systems can be assembled without soldering. The hardware kit is cost-effective (~cost of a textbook) and can be customized depending upon instructional needs. All software is freely-available and we share all necessary codes in open-access, online repositories for simple use and customizability. All lab manuals and additional video tutorials are also freely-available online and customizable. In our particular course, we have weekly asynchronous physiology lectures and one synchronous laboratory session, where students can get help with their equipment. In this paper, we will only focus on the novel and open-source laboratory part of the course. The laboratory includes four units (data acquisition, ECG, EMG, activity classification) and one final project. It is our intent that these resources will allow other educators to rapidly implement their own remote physiology laboratories, or to extend our work into other pedagogical applications of wearable technology.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1301
Author(s):  
Federico Cavedo ◽  
Parisa Esmaili ◽  
Michele Norgia

A low-cost optical reflectivity sensor is proposed in this paper, able to detect the presence of objects or surface optical properties variations, at a distance of up to 20 m. A collimated laser beam is pulsed at 10 kHz, and a synchronous digital detector coherently measures the back-diffused light collected through a 1-inch biconvex lens. The sensor is a cost-effective solution for punctual measurement of the surface reflection at different distances. To enhance the interference immunity, an algorithm based on a double-side digital baseline restorer is proposed and implemented to accurately detect the amplitude of the reflected light. As results show, the sensor is robust against ambient light and shows a strong sensitivity on a wide reflection range. The capability of the proposed sensor was evaluated experimentally for object detection and recognition, in addition to dedicated measurement systems, like remote encoders or keyphasors, realized far from the object to be measured.


2018 ◽  
Vol 5 (3) ◽  
pp. 85-93 ◽  
Author(s):  
Rahul Dubey ◽  
Marjan Popov ◽  
Jose de Jesus Chavez Muro

2021 ◽  
Author(s):  
Robert Groeli

<p>Mobility is one of the most challenging fundamentals of rural livelihood in the Himalayan hills and mountains. More than 8500 trail bridges, comprising an overall span-length of about 650 kilometers have been constructed to date, saving millions of walking hours for people living in the rural Himalayan areas. Previously, crossing rivers was dangerous and sometimes impossible, especially in the rainy season. These bridges created vital connections which enabled children to go to school and people to access public services and visit medical centers and sanctuaries. They also boost local economic output by reducing the effort required to run local farms, gather crops and visit regional markets.</p><p>Fig. 1:The struggles and dangers of crossing a river and its solution</p><p>Swiss technical assistance for rural trail bridges started in the early sixties with the construction of a few suspension bridges in the hill areas of Nepal. In 1964 the Nepalese Government established the Suspension Bridge Division (SBD), and starting in 1972 the Swiss Government began providing continuous technical and financial assistance. Similarly, the Public Works Department in Bhutan initiated a country wide trail bridge construction program in 1971 for which assistance was provided from 1985-2010. Exchanges of experiences between these programs created a collaborative environment where new ideas could be evaluated and tested in the field. After SBD initially developed the basic technical norms, design parameters and standard designs suitable for long-span bridges, demand for simpler shorter span bridges rose tremendously. This prompted the program to develop “community executable bridge designs” adapted to the local skills and materials while conforming to established engineering standards. As a result, cost-effective, easy to implement technologies and community-based approaches were developed, which have been replicated in numerous countries leading to multiple successful partnerships in international development cooperation.</p><p>The purpose of this paper is to highlight the following outcomes of the trail bridge-program:</p><ul><li><p>Standardized cost-effective trail bridge designs based on local capabilities and bridge-building techniques</p></li><li><p>Published of manuals, technical drawings and teaching resources for design, construction and fabrication</p></li><li><p>Engaged local communities in the construction, operation and maintenance of trail bridges</p></li><li><p>Compiled comprehensive trail bridge directory for planning, monitoring and maintenance</p></li><li><p>Established Sector Wide Approach (SWAp) with institutional frameworks at national and local level</p></li><li><p>‘South-South Cooperation’ with Bhutan, Tanzania, Ethiopia, Indonesia, Laos, Burundi, Honduras, Guatemala</p></li></ul>


Author(s):  
Nalina Suresh ◽  
Valerianus Hashiyana ◽  
Victor Panduleni Kulula ◽  
Shreekanth Thotappa

With advancement in technology and ever-changing weather conditions, accurate and affordable water level measurement systems has become necessary for farmers. This therefore brings about the need for a system incorporating the use of IoT technology that will monitor water levels at a cost-effective price with accurate and dependable results. The prototype will monitor water levels on a regular basis and the data captured will be stored in a database to help farmers improve the way they manage their water resource. Farmers will be able to monitor the water levels from any location at any given time. This chapter focuses on a Smart Water Level Monitoring System for Farmers and provides a smart way to manage water resources on farms in the most cost-effective and convenient manner for farmers.


2018 ◽  
Vol 10 (6) ◽  
pp. 168781401878005 ◽  
Author(s):  
Mohammad Omidalizarandi ◽  
Boris Kargoll ◽  
Jens-André Paffenholz ◽  
Ingo Neumann

Today, short- and long-term structural health monitoring of bridge infrastructures and their safe, reliable and cost-effective maintenance have received considerable attention. For this purpose, image-assisted total station (here, Leica Nova MS50 MultiStation) as a modern geodetic measurement system can be utilized for accurate displacement and vibration analysis. The Leica MS50 measurements comprise horizontal angles, vertical angles and distance measurements in addition to the captured images or video streams with practical sampling frequency of 10 Hz using an embedded on-axis telescope camera. Experiments were performed for two case studies under (1) a controlled laboratory environment and (2) a real-world situation observing a footbridge structure using a telescope camera of the Leica MS50. Furthermore, two highly accurate reference measurement systems, namely, a laser tracker Leica AT960-LR and a portable shaker vibration calibrator 9210D in addition to the known natural frequencies of the footbridge structure calculated from the finite element model analysis are used for validation. The feasibility of an optimal passive target pattern and its accurate as well as reliable detection at different epochs of time were investigated as a preliminary step. Subsequently, the vertical angular conversion factor of the telescope camera of the Leica MS50 was calibrated, which allows for an accurate conversion of the derived displacements from the pixel unit to the metric unit. A linear regression model in terms of a sum of sinusoids and an autoregressive model of the coloured measurement noise were employed and solved by means of a generalized expectation maximization algorithm to estimate amplitudes and frequencies with high accuracy. The results show the feasibility of the Leica MS50 for the accurate displacement and vibration analysis of the bridge structure for frequencies less than 5 Hz.


2015 ◽  
Vol 220-221 ◽  
pp. 396-400
Author(s):  
Lauryna Šiaudinytė ◽  
Deividas Sabaitis ◽  
Domantas Bručas ◽  
Gintaras Dmitrijev

Production of high precision circular scales is a complicated process requiring expensive equipment and complex processes to achieve. Precision angle measurement equipment tends to be very expensive and therefore not accessible to all in need. Simplification of production of such devices can lead to reducing costs of angle measurement systems ensuring easier accessibility. A new method of producing precision circular scales using low cost mass production can reduce the costs of these devices drastically. Therefore, utilising a common CD technology as the basis for such scales is analysed. This paper deals with the analysis of the newest laser cutting method for plastic circular scales. Preliminary results of manufacturing such scales are presented in the paper as well as measurements of the grating of the scale were performed. The quality of different scales manufactured using different laser types is analysed in the study. The cost – effective alternative of manufacturing circular scales is discussed in the paper.


2016 ◽  
Vol 4 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Riccardo Colella ◽  
Luca Catarinucci ◽  
Luciano Tarricone

Radio-frequency identification (RFID) technology is a consolidated example of wireless power transfer system in which passive electromagnetic labels called tags are able to harvest electromagnetic energy from the reader antennas, power-up their internal circuitry and provide the automatic identification of objects. Being fully passive, the performance of RFID tags is strongly dependent on the context, so that the selection of the most suitable tag for the specific application becomes a key point. In this work, a cost-effective but accurate system for the over-the-air electromagnetic characterization of assembled UHF RFID tags is firstly presented and then validated through comparison with a consolidated and diffused measurement systems. Moreover, challenging use-cases demonstrating the usefulness of the proposed systems in analyzing the electromagnetic performance of label-type tags also when applied on different material or embedded into concrete structures have been carried out.


2015 ◽  
Vol 156 (52) ◽  
pp. 2096-2102 ◽  
Author(s):  
Barnabás Szabó ◽  
András Borbíró ◽  
Péter Fürjes

The need in modern medicine for near-patient diagnostics being able to accelerate therapeutic decisions and possibly replacing laboratory measurements is significantly growing. Reliable and cost-effective bioanalytical measurement systems are required which – acting as a micro-laboratory – contain integrated biomolecular recognition, sensing, signal processing and complex microfluidic sample preparation modules. These micro- and nanofabricated Lab-on-a-chip systems open new perspectives in the diagnostic supply chain, since they are able even for quantitative, high-precision and immediate analysis of special disease specific molecular markers or their combinations from a single drop of sample. Accordingly, crucial requirements regarding the instruments and the analytical methods are the high selectivity, extremely low detection limit, short response time and integrability into the healthcare information networks. All these features can make the hierarchical examination chain shorten, and revolutionize laboratory diagnostics, evolving a brand new situation in therapeutic intervention. Orv. Hetil., 2015, 156(52), 2096–2102.


2008 ◽  
Vol 32 (4) ◽  
pp. 256-260 ◽  
Author(s):  
Kari L. Clase ◽  
Patrick W. Hein ◽  
Nancy J. Pelaez

Physiology as a discipline is uniquely positioned to engage undergraduate students in interdisciplinary research in response to the 2006–2011 National Science Foundation Strategic Plan call for innovative transformational research, which emphasizes multidisciplinary projects. To prepare undergraduates for careers that cross disciplinary boundaries, students need to practice interdisciplinary communication in academic programs that connect students in diverse disciplines. This report surveys policy documents relevant to this emphasis on interdisciplinary training and suggests a changing role for physiology courses in bioscience and engineering programs. A role for a physiology course is increasingly recommended for engineering programs, but the study of physiology from an engineering perspective might differ from the study of physiology as a basic science. Indeed, physiology laboratory courses provide an arena where biomedical engineering and bioscience students can apply knowledge from both fields while cooperating in multidisciplinary teams under specified technical constraints. Because different problem-solving approaches are used by students of engineering and bioscience, instructional innovations are needed to break down stereotypes between the disciplines and create an educational environment where interdisciplinary teamwork is used to bridge differences.


Sign in / Sign up

Export Citation Format

Share Document