scholarly journals MicroRNA-488 inhibits progression of colorectal cancer via inhibition of the mitogen-activated protein kinase pathway by targeting claudin-2

2019 ◽  
Vol 316 (1) ◽  
pp. C33-C47 ◽  
Author(s):  
Yong-Bing Wang ◽  
Quan Shi ◽  
Gang Li ◽  
Jun-Hua Zheng ◽  
Jie Lin ◽  
...  

Colorectal cancer (CRC) affects people globally, and lymph node metastasis (LNM) is an important indicator of poor clinical outcome in CRC. The current study aims to evaluate the role of microRNA-448 (miR-488) and claudin-2 (CLDN2) in epithelial-mesenchymal transition (EMT) and LNM of CRC through the MAPK signaling pathway. First, microarray analysis indicated that miR-488 was poorly expressed in CRC, whereas CLDN2 was highly expressed. Additionally, the bioinformatics website MicroRNA.org and the dual luciferase reporter gene assay found that CLDN2 was a target gene of miR-488. Next, the results for the correlations between expression of miR-488 and clinicopathological characteristics of CRC indicated that the expression of miR-488 was closely associated with differentiation degree, LNM, and Dukes stages in CRC patients. Moreover, overexpression of miR-488 inhibited the activation of the MAPK signal transduction pathway. Notably, loss- and gain-of-function experiments demonstrated that upregulation of miR-488 suppressed SW480 cell viability, invasion, and migration and promoted apoptosis in SW480 cells. Finally, overexpression of miR-488 inhibited LNM, microlymphatic vessel density, and tumor growth in nude mice. We conclude that overexpression of miR-488 could suppress the cell proliferation, EMT, and LNM of CRC cells via inhibition of the CLDN2-mediated MAPK signaling pathway, which could be a new molecular therapy target for CRC.

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Tao Liu ◽  
Lei Zhou ◽  
Zhiwei He ◽  
Yankun Chen ◽  
Xueyi Jiang ◽  
...  

Circular RNAs (circRNAs) play key roles in many malignant tumors, including pancreatic cancer (PC); however, whether circular RNA hsa_circ_0006117, a newly identified circRNA, has a role in PC has not been investigated. Here, in order to elucidate the role and potential molecular mechanisms of circRNAs, we utilized bioinformatic tolls to screen the differentially expressed circRNAs in PC. Subsequently, circular RNA hsa_circ_0006117 was identified as being highly expressed in PC tissues in a screen of two GEO datasets, which was further verified in PC cell lines and tissues. Then, its molecular characteristics were investigated using methods such as Sanger sequencing and fluorescence in situ hybridization (FISH). Functional experiments subsequently indicated that circular RNA hsa_circ_0006117 facilitated the malignant behaviors of PC cells, prompting that it plays an oncogenic role in PC. Moreover, we found that circular RNA hsa_circ_0006117 exerts its PC-promoting effects via activating the KRAS/mitogen-activated protein kinase (MAPK) signaling pathway. Through bioinformatics exploration and dual-luciferase reporter assays, miR-96-5p was identified as a downstream target of circular RNA hsa_circ_0006117. A series of assays confirmed that circular RNA hsa_circ_0006117 acted as a miR-96-5p sponge, thereby promoting the malignant features of PC in a miR-96-5p/KRAS axis-dependent manner. Taken together, our study indicated, for the first time, that the specifically highly expressed circular RNA hsa_circ_0006117 facilitates PC progression via the modulation of the miR-96-5p/KRAS/MAPK signaling pathway and might be a hopeful therapeutic target for PC.


2018 ◽  
Vol 17 ◽  
pp. 117693511876652 ◽  
Author(s):  
Martha L Slattery ◽  
Lila E Mullany ◽  
Lori C Sakoda ◽  
Roger K Wolff ◽  
Wade S Samowitz ◽  
...  

Mitogen-activated protein kinase (MAPK) pathways regulate many cellular functions including cell proliferation and apoptosis. We examined associations of differential gene and microRNA (miRNA) expression between carcinoma and paired normal mucosa for 241 genes in the KEGG-identified MAPK-signaling pathway among 217 colorectal cancer (CRC) cases. Gene expression data (RNA-Seq) and miRNA expression data (Agilent Human miRNA Microarray V19.0; Agilent Technologies Inc., Santa Clara, CA, USA) were analyzed. We first identified genes most strongly associated with CRC using a fold change (FC) of >1.50 or <0.67) that were statistically significant after adjustment for multiple comparisons. We then determined miRNAs associated with dysregulated genes and through miRNA:mRNA (messenger RNA) seed region matches discerned genes with a greater likelihood of having a direct biological association. Ninety-nine genes had a meaningful FC for all CRC, microsatellite unstable–specific tumors, or microsatellite stable–specific tumors. Thirteen dysregulated genes were associated with miRNAs, totaling 68 miRNA:mRNA associations. Thirteen of the miRNA:mRNA associations had seed region matches where the differential expression between the miRNA and mRNA was inversely related suggesting a direct association as a result of their binding. Several direct associations, upstream of ERK1/ERK2, JNK, and p38, were found for PDGFRA with 7 miRNAs; RASGRP3 and PRKCB with miR-203a; and TGFBR1 with miR-6071 and miR-2117. Other associations between miRNAs and mRNAs are most likely indirect, resulting from feedback and feed forward loops. Our results suggest that miRNAs may alter MAPK signaling through direct binding with key genes in this pathway. We encourage others to validate results in targeted CRC experiments that can help solidify important therapeutic targets.


2021 ◽  
Author(s):  
Xiaowei Fei ◽  
Ya-nan Dou ◽  
Kai Sun ◽  
Jialiang Wei ◽  
Qingdong Guo ◽  
...  

Abstract Background Tripartite motif (TRIM) 22 and mitogen-activated protein kinase (MAPK) signaling pathways play a critical role in tumor growth and therapeutic resistance of glioblastoma (GBM) respectively. However, the molecular mechanism between TRIM22 and MAPK signaling remains to be clarified. Methods We constructed TRIM22 knockout cell lines for molecular biology experiments, detected potential DNA fragments binding to TRIM22 by ChIP-Seq technology, and verified the sequencing results by ChIP-qPCR and CUT&Tag technology. In addition, we constructed different TRIM22 mutants to detect the binding of proteins in MAPK signaling pathway. Finally, the therapeutic effect was verified in NOD/SCID mice. The difference between the two groups of data conforming to the normal distribution was tested by Student t-test. Results Here, we found for the first time that TRIM22 acts as a transcription factor in the nucleus and binds to exon 2 of the transcript (NM_001204160) of SPHK2 gene to regulate its expression by ChIP-Seq technology, thus indirectly affecting the downstream MAPK signaling pathway. Knockout of TRIM22 using Cas9-sgRNAs resulted in decreased mRNA level of SPHK2 in GBM cells, while overexpression of TRIM22 enhanced it. The ERK1/2 driven luciferase reporter construct identified TRIM22 as a potential activator of MAPK signaling. Knockout and overexpression of TRIM22 regulate the inhibition and activation of MAPK signaling through its RING-finger domain. Co-immunoprecipitation demonstrated that TRIM22 bound to the negative regulator Raf-1 of MAPK signaling and accelerated its degradation by inducing K48-linked ubiquitination. The combination of the two is related to the CC domain and SPRY domain of TRIM22 and the C1D domain of Raf-1. TRIM22 also forms a complex with the downstream regulator ERK1/2 of MAPK and promotes K63-linked ubiquitination, resulting in the phosphorylation of ERK1/2. In addition, in vitro and in situ xenotransplantation models, SPHK2 inhibitor (K145), ERK1/2 inhibitor (Selumetinib) and non-phosphorylated mutant Raf-1S338A inhibited the growth promoting properties of TRIM22 in GBM cell line. Conclusions In conclusion, our study shows that TRIM22 regulates SPHK2 transcription as a transcription factor, indirectly affects MAPK signaling, and activates MAPK signaling through post-translational modification of two critical regulators of MAPK signaling in GBM cells.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Li Li ◽  
Huabo Jiang ◽  
Xuecong Wei ◽  
Dandan Geng ◽  
Ming He ◽  
...  

Vascular endothelial growth factor receptor-2 (VEGFR-2) regulates the mitogen-activated protein kinase (MAPK) signaling pathway and plays an important role in angiogenesis. Bu Shen Zhu Yun decoction (BSZYD) can improve endometrial receptivity and embryo implantation rates in patients undergoing in vitro fertilization. However, whether BSZYD improves endometrial receptivity via angiogenesis remains unclear. Here, we investigated the effects of BSZYD on the proliferation, migration, and angiogenesis of human endometrial microvascular endothelial cells (HEMECs) and found that BSZYD upregulated the expression of cyclin D1, matrix metalloproteinase 9 (MMP9), and proliferating cell nuclear antigen (PCNA) in HEMECs. Cell Counting Kit 8 assay, scratch-wound assay, and Tube Formation Assay results showed that BSZYD promoted the proliferation, migration, and angiogenesis of HEMECs. Western blot analysis results revealed the activation of the MAPK signaling pathway by BSZYD through the upregulation of VEGF and VEGFR-2 expression. Together, these findings highlight the novel mechanism underlying BSZYD-mediated improvement in endometrial receptivity through the MAPK signaling pathway.


2020 ◽  
Author(s):  
Jing-Shuai Wu ◽  
Qin-Yu Meng ◽  
Xiao-Hui Shi ◽  
Zhen-Kun Zhang ◽  
Hua-Shi Guan ◽  
...  

Abstract Background: Neuroinflammatory processes are critical in the development and progression of Alzheimer's disease (AD). The potent anti-neuroinflammatory inhibitors are expected as the candidates to treat AD. Cryptotanshinone (1), a major bioactive constituent in the traditional Chinese medicinal herb Dan-Shen Salvia miltiorrhiza Bunge, has been reported to possess remarkable pharmacological activities, especially anti-oxidation and anti-inflammation. Methods: Cryptotanshinone (1) was biotransformed with the fungus Cunninghamella elegans AS3.2028 to improve its bioactivities and physicochemical properties. The structures of transformed products were elucidated by comprehensive spectroscopic analysis including HRESIMS, NMR and ECD data. Their anti-neuroinflammatory activities were assessed by ELISA, transcriptome analysis, western blot, and immunofluorescence methods. Results: Three oxygenated products (2–4) at C-3 of cryptotanshinone (1) were obtained, among them 2 was a new compound. All of the biotransformed products (2–4) were found to inhibit significantly lipopolysaccharide-induced nitric oxide production in BV2 microglia cells with the IC50 values of 0.16‒1.16 μM, approximately 2‒20 folds stronger than the substrate (1). These biotransformed products also displayed remarkably improved inhibitory effects on the production of inflammatory cytokines (IL-1β, IL-6, TNF-α, COX-2 and iNOS) in BV-2 cells via targeting TLR4 compared to substrate (1). The underlying mechanism of 2 was elucidated by comparative transcriptome analysis, which suggested that it reduced neuroinflammatory mainly through mitogen-activated protein kinase (MAPK) signaling pathway. Western blotting results revealed that 2 downregulated LPS-induced phosphorylation of JNK, ERK, and p38 in MAPK signaling pathway. Conclusion: The biotransformed products of cryptotanshinone exhibit potent anti-neuroinflammatory activities. These findings provide a basal material for the discovery of candidates in treating AD.


2019 ◽  
Vol 120 (12) ◽  
pp. 19245-19253 ◽  
Author(s):  
Atena Soleimani ◽  
Farzad Rahmani ◽  
Nikoo Saeedi ◽  
Rana Ghaffarian ◽  
Majid Khazaei ◽  
...  

2020 ◽  
Vol 21 (9) ◽  
pp. 3236 ◽  
Author(s):  
Karel Vališ ◽  
Petr Novák

Extracellular signal-regulated kinase (ERK) is a part of the mitogen-activated protein kinase (MAPK) signaling pathway which allows the transduction of various cellular signals to final effectors and regulation of elementary cellular processes. Deregulation of the MAPK signaling occurs under many pathological conditions including neurodegenerative disorders, metabolic syndromes and cancers. Targeted inhibition of individual kinases of the MAPK signaling pathway using synthetic compounds represents a promising way to effective anti-cancer therapy. Cross-talk of the MAPK signaling pathway with other proteins and signaling pathways have a crucial impact on clinical outcomes of targeted therapies and plays important role during development of drug resistance in cancers. We discuss cross-talk of the MAPK/ERK signaling pathway with other signaling pathways, in particular interplay with the Hippo/MST pathway. We demonstrate the mechanism of cell death induction shared between MAPK/ERK and Hippo/MST signaling pathways and discuss the potential of combination targeting of these pathways in the development of more effective anti-cancer therapies.


Sign in / Sign up

Export Citation Format

Share Document