Actin reorganization contributes to loss of cell adhesion in pemphigus vulgaris

2010 ◽  
Vol 299 (3) ◽  
pp. C606-C613 ◽  
Author(s):  
Martin Gliem ◽  
Wolfgang-Moritz Heupel ◽  
Volker Spindler ◽  
Gregory S. Harms ◽  
Jens Waschke

In the human autoimmune blistering skin disease pemphigus vulgaris autoantibodies (PV-IgG), which are mainly directed against keratinocyte cell adhesion molecules desmoglein (Dsg) 3 and Dsg1, cause keratinocyte cell dissociation (acantholysis). Recent studies reported that loss of keratinocyte cell adhesion was accompanied by profound alterations of the actin cytoskeleton. Nevertheless, the relevance of actin reorganization in this process is unclear at present. In this study, we provide evidence for an important role of actin reorganization in pemphigus pathogenesis. In parallel to loss of cell adhesion and fragmentation of Dsg3 staining along cell borders, PV-IgG treatment resulted in striking changes in actin cytoskeleton organization. Moreover, in experiments using fluorescence recovery after photobleaching (FRAP), PV-IgG were detected to interfere with actin dynamics. Therefore, we investigated whether pharmacological manipulation of actin polymerization modulates pathogenic effects of PV-IgG. Pharmacological stabilization of actin filaments via jasplakinolide significantly blocked cell dissociation and Dsg3 fragmentation, whereas cytochalasin D-induced actin depolymerization strongly enhanced pathogenic effects of PV-IgG. To substantiate these findings, we studied whether the protective effects of Rho GTPases, which are potent regulators of the actin cytoskeleton and were shown to be involved in pemphigus pathogenesis, were dependent on modulation of actin dynamics. Cytotoxic necrotizing factor-1 (CNF-1)-mediated activation of Rho-GTPases enhanced the cortical junction-associated actin belt and blunted PV-IgG-induced cell dissociation. However, when actin polymerization was blocked under these conditions via addition of latrunculin B, the protective effects of CNF-1 were abrogated. Taken together, these experiments indicate that reorganization of cortical actin filaments is a critical step in PV-IgG-induced keratinocyte dissociation.

2013 ◽  
Vol 288 (29) ◽  
pp. 20966-20977 ◽  
Author(s):  
Haitao Zhang ◽  
Pooja Ghai ◽  
Huhehasi Wu ◽  
Changhui Wang ◽  
Jeffrey Field ◽  
...  

CAP (adenylyl cyclase-associated protein) was first identified in yeast as a protein that regulates both the actin cytoskeleton and the Ras/cAMP pathway. Although the role in Ras signaling does not extend beyond yeast, evidence supports that CAP regulates the actin cytoskeleton in all eukaryotes including mammals. In vitro actin polymerization assays show that both mammalian and yeast CAP homologues facilitate cofilin-driven actin filament turnover. We generated HeLa cells with stable CAP1 knockdown using RNA interference. Depletion of CAP1 led to larger cell size and remarkably developed lamellipodia as well as accumulation of filamentous actin (F-actin). Moreover, we found that CAP1 depletion also led to changes in cofilin phosphorylation and localization as well as activation of focal adhesion kinase (FAK) and enhanced cell spreading. CAP1 forms complexes with the adhesion molecules FAK and Talin, which likely underlie the cell adhesion phenotypes through inside-out activation of integrin signaling. CAP1-depleted HeLa cells also had substantially elevated cell motility as well as invasion through Matrigel. In summary, in addition to generating in vitro and in vivo evidence further establishing the role of mammalian CAP1 in actin dynamics, we identified a novel cellular function for CAP1 in regulating cell adhesion.


2004 ◽  
Vol 24 (4) ◽  
pp. 1628-1639 ◽  
Author(s):  
Fabiola V. Rivas ◽  
James P. O'Keefe ◽  
Maria-Luisa Alegre ◽  
Thomas F. Gajewski

ABSTRACT T-cell activation by antigen-presenting cells is accompanied by actin polymerization, T-cell receptor (TCR) capping, and formation of the immunological synapse. However, whether actin-dependent events are required for T-cell function is poorly understood. Herein, we provide evidence for an unexpected negative regulatory role of the actin cytoskeleton on TCR-induced cytokine production. Disruption of actin polymerization resulted in prolonged intracellular calcium elevation in response to anti-CD3, thapsigargin, or phorbol myristate acetate plus ionomycin, leading to persistent NFAT (nuclear factor of activated T cells) nuclear duration. These events were dominant, as the net effect of actin blockade was augmented interleukin 2 promoter activity. Increased surface expression of the plasma membrane Ca2+ ATPase was observed upon stimulation, which was inhibited by cytochalasin D, suggesting that actin polymerization contributes to calcium export. Our results imply a novel role for the actin cytoskeleton in modulating the duration of Ca2+-NFAT signaling and indicate that actin dynamics regulate features of T-cell activation downstream of receptor clustering.


Blood ◽  
2001 ◽  
Vol 97 (1) ◽  
pp. 154-161 ◽  
Author(s):  
Ponlapat Rojnuckarin ◽  
Kenneth Kaushansky

Abstract With the recent cloning and characterization of thrombopoietin, appreciation of the molecular events surrounding megakaryocyte (MK) development is growing. However, the final stages of platelet formation are less well understood. Platelet production occurs after the formation of MK proplatelet processes. In a study to explore the molecular mechanisms underlying this process, mature MKs isolated from suspension murine bone marrow cell cultures were induced to form proplatelets by exposure to plasma, and the role of various cell-signaling pathways was assessed. The results showed that (1) bis-indolylmaleimide I, which blocks protein kinase C (PKC) activation; (2) down-modulation of conventional or novel classes of PKC by phorbol myristate acetate; and (3) ribozymes specific for PKCα each inhibited proplatelet formation. Inhibition of several MAP kinases, PI3 kinase, or protein kinase A failed to affect MK proplatelet formation. To gain further insights into the function of PKCα in proplatelet formation, its subcellular localization was investigated. In cultures containing active proplatelet formation, cytoplasmic polymerized actin was highly aggregated, its subcellular distribution was reorganized, and PKCα colocalized with the cellular actin aggregates. A number of MK manipulations, including blockade of integrin signaling with a disintegrin or inhibition of actin polymerization with cytochalasin D, interrupted actin reorganization, PKC relocalization, and proplatelet formation. These findings suggest an important role for PKCα in proplatelet development and suggest that it acts by altering actin dynamics in proplatelet-forming MKs. Identification of the upstream and downstream pathways involved in proplatelet formation should provide greater insights into thrombopoiesis, potentially allowing pharmacologic manipulation of the process.


2020 ◽  
Vol 117 (33) ◽  
pp. 19904-19913 ◽  
Author(s):  
Caner Akıl ◽  
Linh T. Tran ◽  
Magali Orhant-Prioux ◽  
Yohendran Baskaran ◽  
Edward Manser ◽  
...  

Asgard archaea genomes contain potential eukaryotic-like genes that provide intriguing insight for the evolution of eukaryotes. The eukaryotic actin polymerization/depolymerization cycle is critical for providing force and structure in many processes, including membrane remodeling. In general, Asgard genomes encode two classes of actin-regulating proteins from sequence analysis, profilins and gelsolins. Asgard profilins were demonstrated to regulate actin filament nucleation. Here, we identify actin filament severing, capping, annealing and bundling, and monomer sequestration activities by gelsolin proteins from Thorarchaeota (Thor), which complete a eukaryotic-like actin depolymerization cycle, and indicate complex actin cytoskeleton regulation in Asgard organisms. Thor gelsolins have homologs in other Asgard archaea and comprise one or two copies of the prototypical gelsolin domain. This appears to be a record of an initial preeukaryotic gene duplication event, since eukaryotic gelsolins are generally comprise three to six domains. X-ray structures of these proteins in complex with mammalian actin revealed similar interactions to the first domain of human gelsolin or cofilin with actin. Asgard two-domain, but not one-domain, gelsolins contain calcium-binding sites, which is manifested in calcium-controlled activities. Expression of two-domain gelsolins in mammalian cells enhanced actin filament disassembly on ionomycin-triggered calcium release. This functional demonstration, at the cellular level, provides evidence for a calcium-controlled Asgard actin cytoskeleton, indicating that the calcium-regulated actin cytoskeleton predates eukaryotes. In eukaryotes, dynamic bundled actin filaments are responsible for shaping filopodia and microvilli. By correlation, we hypothesize that the formation of the protrusions observed from Lokiarchaeota cell bodies may involve the gelsolin-regulated actin structures.


2007 ◽  
Vol 27 (19) ◽  
pp. 6615-6628 ◽  
Author(s):  
Tanja Bosse ◽  
Julia Ehinger ◽  
Aleksandra Czuchra ◽  
Stefanie Benesch ◽  
Anika Steffen ◽  
...  

ABSTRACT Activation of c-Met, the hepatocyte growth factor (HGF)/scatter factor receptor induces reorganization of the actin cytoskeleton, which drives epithelial cell scattering and motility and is exploited by pathogenic Listeria monocytogenes to invade nonepithelial cells. However, the precise contributions of distinct Rho-GTPases, the phosphatidylinositol 3-kinases, and actin assembly regulators to c-Met-mediated actin reorganization are still elusive. Here we report that HGF-induced membrane ruffling and Listeria invasion mediated by the bacterial c-Met ligand internalin B (InlB) were significantly impaired but not abrogated upon genetic removal of either Cdc42 or pharmacological inhibition of phosphoinositide 3-kinase (PI3-kinase). While loss of Cdc42 or PI3-kinase function correlated with reduced HGF- and InlB-triggered Rac activation, complete abolishment of actin reorganization and Rac activation required the simultaneous inactivation of both Cdc42 and PI3-kinase signaling. Moreover, Cdc42 activation was fully independent of PI3-kinase activity, whereas the latter partly depended on Cdc42. Finally, Cdc42 function did not require its interaction with the actin nucleation-promoting factor N-WASP. Instead, actin polymerization was driven by Arp2/3 complex activation through the WAVE complex downstream of Rac. Together, our data establish an intricate signaling network comprising as key molecules Cdc42 and PI3-kinase, which converge on Rac-mediated actin reorganization essential for Listeria invasion and membrane ruffling downstream of c-Met.


2011 ◽  
Vol 436 (3) ◽  
pp. 699-708 ◽  
Author(s):  
Emmanuel Collec ◽  
Marie-Christine Lecomte ◽  
Wassim El Nemer ◽  
Yves Colin ◽  
Caroline Le Van Kim

Lu/BCAM (Lutheran/basal cell-adhesion molecule) is a laminin 511/521 receptor expressed in erythroid and endothelial cells, and in epithelial tissues. The RK573–574 (Arg573-Lys574) motif of the Lu/BCAM cytoplasmic domain interacts with αI-spectrin, the main component of the membrane skeleton in red blood cells. In the present paper we report that Lu/BCAM binds to the non-erythroid αII-spectrin via the RK573–574 motif. Alanine substitution of this motif abolished the Lu/BCAM–spectrin interaction, enhanced the half-life of Lu/BCAM at the MDCK (Madin–Darby canine kidney) cell surface, and increased Lu/BCAM-mediated cell adhesion and spreading on laminin 511/521. We have shown that the Lu/BCAM–spectrin interaction mediated actin reorganization during cell adhesion and spreading on laminin 511/521. This interaction was involved in a laminin 511/521-to-actin signalling pathway leading to stress fibre formation. This skeletal rearrangement was associated with an activation of the small GTP-binding protein RhoA, which depended on the integrity of the Lu/BCAM laminin 511/521-binding site. It also required a Lu/BCAM–αII-spectrin interaction, since its disruption decreased stress fibre formation and RhoA activation. We conclude that the Lu/BCAM–spectrin interaction is required for stress fibre formation during cell spreading on laminin 511/521, and that spectrin acts as a signal relay between laminin 511/521 and actin that is involved in actin dynamics.


2016 ◽  
Vol 311 (4) ◽  
pp. L800-L809 ◽  
Author(s):  
Yufeng Tian ◽  
Xinyong Tian ◽  
Grzegorz Gawlak ◽  
Nicolene Sarich ◽  
David B. Sacks ◽  
...  

Oxidized 1-palmitoyl-2-arachidonoyl- sn-glycero-3-phosphatidylcholine (OxPAPC) attenuates agonist-induced endothelial cell (EC) permeability and increases pulmonary endothelial barrier function via enhancement of both the peripheral actin cytoskeleton and cell junctions mediated by Rac1 and Cdc42 GTPases. This study evaluated the role for the multifunctional Rac1/Cdc42 effector and regulator, IQ domain containing GTPase-activating protein (IQGAP1), as a molecular transducer of the OxPAPC-mediated EC barrier-enhancing signal. IQGAP1 knockdown in endothelial cells by gene-specific small-interfering RNA abolished OxPAPC-induced enlargement of VE-cadherin-positive adherens junctions, suppressed peripheral accumulation of actin polymerization regulators, namely cortactin, neural Wiskott-Aldrich syndrome protein (N-WASP), and actin-related protein 3, and attenuated remodeling of the peripheral actin cytoskeleton. Inhibition of OxPAPC-induced barrier enhancement by IQGAP1 knockdown was due to suppressed Rac1 and Cdc42 activation. Expression of an IQGAP1 truncated mutant showed that the GTPase regulatory domain of IQGAP1 was essential for the OxPAPC-induced membrane localization of cortactin, adherens junction proteins VE-cadherin and p120-catenin, as well as for EC permeability response. IQGAP1 knockdown attenuated the protective effect of OxPAPC against thrombin-induced cell contraction, cell junction disruption, and EC permeability. These results demonstrate for the first time the role of IQGAP1 as a critical transducer of OxPAPC-induced Rac1/Cdc42 signaling to the actin cytoskeleton and adherens junctions, which promotes cortical cytoskeletal remodeling and EC barrier-protective effects of oxidized phospholipids.


Blood ◽  
1993 ◽  
Vol 81 (10) ◽  
pp. 2750-2757
Author(s):  
RG Watts ◽  
TH Howard

Cytoskeletal structure in polymorphonuclear leukocytes (PMNs) is thought to reflect a simple equilibrium between two actin pools (globular [G]- and filamentous [F] actin). Recent description of two distinct F-actin pools in PMNs (Triton-insoluble [stable] and Triton- soluble [labile] F-actin pools) (Watts and Howard, Cell Motil Cytoskeleton, 21:25, 1992) suggest a tripartite equilibrium between these F-actin pools and G-actin and multiple possible mechanisms for polymerization. To study the contribution of each actin pool to actin dynamics in PMNs, changes in actin content of the Triton-soluble and - insoluble F-actin pools and G-actin in chemotactic factor (CTF)- activated PMNs were measured by NBDphallacidin binding and by gel scans of Triton-lysed PMNs. From 0 to 30 seconds after CTF activation, PMNs rapidly increase total (Triton-soluble + Triton-insoluble) F-actin content (maximum = 1.7- +/- 0.10-fold basal at 30 seconds). Concurrent measures of the actin content of individual actin pools (Triton-soluble and -insoluble F-actin and G-actin) show that at all times (0 to 30 seconds) only the Triton-insoluble F-actin pool grows (maximum = 2.81- +/- 0.73-fold basal at 30 seconds), whereas both the Triton-soluble and G-actin pools simultaneously decrease (50% decrease at 30 seconds). Concurrent growth of one F-actin pool (Triton-insoluble) and loss of another F-actin pool (Triton-soluble) emphasize the functional uniqueness of the F-actin pools and can occur only if the Triton- soluble F-actin anneals or cross-links filament-to-filament with the Triton-insoluble fraction or if the Triton-insoluble F-actin pool first depolymerizes to monomer, which is then added to the Triton-insoluble pool. Because from 0 to 30 seconds after FMLP activation G-actin never increases, but, like the Triton-soluble F-actin progressively decreases, the results suggest that F-actin growth results from simultaneous new filament growth by monomer addition to the Triton- insoluble F-actin and cytoskeletal remodelling by Triton-soluble F- actin annealing or cross-linking to Triton-insoluble F-actin. These findings offer important new insights into the mechanism(s) of actin polymerization in CTF-activated human PMNs.


2019 ◽  
Vol 20 (13) ◽  
pp. 3113
Author(s):  
Benedikt Beckert ◽  
Francesca Panico ◽  
Robert Pollmann ◽  
Rüdiger Eming ◽  
Antje Banning ◽  
...  

Pemphigus Vulgaris is an autoimmune disease that results in blister formation in the epidermis and in mucosal tissues due to antibodies recognizing desmosomal cadherins, mainly desmoglein-3 and -1. Studies on the molecular mechanisms of Pemphigus have mainly been carried out using the spontaneously immortalized human keratinocyte cell line HaCaT or in primary keratinocytes. However, both cell systems have suboptimal features, with HaCaT cells exhibiting a large number of chromosomal aberrations and mutated p53 tumor suppressor, whereas primary keratinocytes are short-lived, heterogeneous and not susceptible to genetic modifications due to their restricted life-span. We have here tested the suitability of the commercially available human keratinocyte cell line hTert/KER-CT as a model system for research on epidermal cell adhesion and Pemphigus pathomechanisms. We here show that hTert cells exhibit a calcium dependent expression of desmosomal cadherins and are well suitable for typical assays used for studies on Pemphigus, such as sequential detergent extraction and Dispase-based dissociation assay. Treatment with Pemphigus auto-antibodies results in loss of monolayer integrity and altered localization of desmoglein-3, as well as loss of colocalization with flotillin-2. Our findings demonstrate that hTert cells are well suitable for studies on epidermal cell adhesion and Pemphigus pathomechanisms.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 266-266
Author(s):  
Hee-Don Chae ◽  
Katherine E. Lee ◽  
Aparna C. Jasti ◽  
David A. Williams ◽  
Yi Gu

Abstract Movement of hematopoietic stem/progenitor cells into (engraftment) and out of (mobilization) the bone marrow involves actin cytoskeleton and chemotaxis. Members of the Rho GTPase family have been well known for their critical roles in morphogenesis and cell migration via regulating actin assembly. Loss of Rac1 and Rac2 alleles leads to defective engraftment and massive mobilization of hematopoietic progenitor cells (HPCs), which are associated with impaired chemotaxis and cortical filamentous (F)-actin polymerization (Gu et al., Science 302: 445–449). RhoH, a hematopoietic-specific member of the RhoE subfamily, negatively regulates HPC engraftment, chemotaxis, F-actin polymerization and Rac activities (Gu et al., Blood 105: 1467–1475). These findings suggest that RhoH may antagonize Rac function in regulating these cellular processes. However, molecular mechanism of the cross-talk between these Rho GTPases is not defined. In this study, we examined the role of RhoH in actin cytoskeleton organization, chemotaxis and Rac membrane translocation in response to stromal-derived factor 1α (SDF-1α) using RhoH-deficient HPCs and retrovirus-mediated expression of EGFP-fusion proteins. RhoH−/− HPCs exhibit increased migration in response to SDF-1α, especially at low concentration, as compared with wild-type (WT) cells [10ng/ml SDF-1α: 3.5 +/− 0.9 vs. 12.3 +/− 1.8; 100ng/ml SDF-1α: 21.4 +/− 1.7 vs. 32.3 +/− 3.4, migrated cells (%), WT vs. RhoH−/−, n=3, p< 0.01]. Migration without SDF-1α stimulation of RhoH−/− cells is also enhanced. RhoH−/− HPCs assemble cortical F-actin without SDF-1α stimulation, under conditions in which WT cells do not show F-actin polymerization [cells with F-actin (%): 8.9 +/− 0.9 vs. 72.8 +/− 4, WT vs. RhoH−/−, n=6, p<0.001]. Additionally, RhoH−/− HPCs exhibit increased active, GTP-bound Rac GTPases. PAK, a known downstream effector of Rac in regulating actin cytoskeleton, also shows hyperphosphorylation in RhoH-/− HPCs, suggesting that RhoH may regulate actin assembly and cell migration through Rac-mediated pathway. In support of this, expression of a dominant negative Rac1N17 mutant blocks cortical F-actin assembly in RhoH−/− cells [cells with F-actin (%): 60 +/− 1 vs. 19 +/− 7, EGFP-Rac1 vs. Rac1N17, n=2]. To further address the mechanism by which RhoH cross-talks to affect Rac signaling, we examine the role of RhoH in subcellular localization of EGFP-Rac proteins. SDF-1α induces activation of Rac, leading to translocation to the cell membrane where it co-localizes with lipid rafts and mediates cortical F-actin assembly in HPCs. In contrast, the dominant negative Rac1N17 does not localize to the cell membrane after SDF-1α stimulation. In RhoH−/− HPCs, EGFP-Rac protein presents at the cell membrane in the absence of SDF-1α [cells with membrane-localized EGFP-Rac1 (%): 7.5 +/− 3.9 vs. 44.5 +/− 6.4, WT vs. RhoH−/−, n=2]. In contrast, overexpression of RhoH in HPCs blocks translocation to the cell membrane after SDF-1α stimulation of Rac1, Rac2 and active Rac1V12. Finally, we found that RhoH, a constitutively active, GTP-bound protein, preferentially localizes to the cell membrane even in the absence of SDF-1α. This localization is dependent upon the prenylation site and the c-terminal domains of RhoH. Lack of membrane localization is associated with defective biological function. Together, our data suggest that RhoH is essential for proper cortical F-actin assembly and chemotaxis of HPCs via regulating Rac activation and membrane localization, and implicates a functional cross-talk between RhoH and Rac.


Sign in / Sign up

Export Citation Format

Share Document