scholarly journals Mechanisms for actin reorganization in chemotactic factor-activated polymorphonuclear leukocytes

Blood ◽  
1993 ◽  
Vol 81 (10) ◽  
pp. 2750-2757
Author(s):  
RG Watts ◽  
TH Howard

Cytoskeletal structure in polymorphonuclear leukocytes (PMNs) is thought to reflect a simple equilibrium between two actin pools (globular [G]- and filamentous [F] actin). Recent description of two distinct F-actin pools in PMNs (Triton-insoluble [stable] and Triton- soluble [labile] F-actin pools) (Watts and Howard, Cell Motil Cytoskeleton, 21:25, 1992) suggest a tripartite equilibrium between these F-actin pools and G-actin and multiple possible mechanisms for polymerization. To study the contribution of each actin pool to actin dynamics in PMNs, changes in actin content of the Triton-soluble and - insoluble F-actin pools and G-actin in chemotactic factor (CTF)- activated PMNs were measured by NBDphallacidin binding and by gel scans of Triton-lysed PMNs. From 0 to 30 seconds after CTF activation, PMNs rapidly increase total (Triton-soluble + Triton-insoluble) F-actin content (maximum = 1.7- +/- 0.10-fold basal at 30 seconds). Concurrent measures of the actin content of individual actin pools (Triton-soluble and -insoluble F-actin and G-actin) show that at all times (0 to 30 seconds) only the Triton-insoluble F-actin pool grows (maximum = 2.81- +/- 0.73-fold basal at 30 seconds), whereas both the Triton-soluble and G-actin pools simultaneously decrease (50% decrease at 30 seconds). Concurrent growth of one F-actin pool (Triton-insoluble) and loss of another F-actin pool (Triton-soluble) emphasize the functional uniqueness of the F-actin pools and can occur only if the Triton- soluble F-actin anneals or cross-links filament-to-filament with the Triton-insoluble fraction or if the Triton-insoluble F-actin pool first depolymerizes to monomer, which is then added to the Triton-insoluble pool. Because from 0 to 30 seconds after FMLP activation G-actin never increases, but, like the Triton-soluble F-actin progressively decreases, the results suggest that F-actin growth results from simultaneous new filament growth by monomer addition to the Triton- insoluble F-actin and cytoskeletal remodelling by Triton-soluble F- actin annealing or cross-linking to Triton-insoluble F-actin. These findings offer important new insights into the mechanism(s) of actin polymerization in CTF-activated human PMNs.

Blood ◽  
1993 ◽  
Vol 81 (10) ◽  
pp. 2750-2757 ◽  
Author(s):  
RG Watts ◽  
TH Howard

Abstract Cytoskeletal structure in polymorphonuclear leukocytes (PMNs) is thought to reflect a simple equilibrium between two actin pools (globular [G]- and filamentous [F] actin). Recent description of two distinct F-actin pools in PMNs (Triton-insoluble [stable] and Triton- soluble [labile] F-actin pools) (Watts and Howard, Cell Motil Cytoskeleton, 21:25, 1992) suggest a tripartite equilibrium between these F-actin pools and G-actin and multiple possible mechanisms for polymerization. To study the contribution of each actin pool to actin dynamics in PMNs, changes in actin content of the Triton-soluble and - insoluble F-actin pools and G-actin in chemotactic factor (CTF)- activated PMNs were measured by NBDphallacidin binding and by gel scans of Triton-lysed PMNs. From 0 to 30 seconds after CTF activation, PMNs rapidly increase total (Triton-soluble + Triton-insoluble) F-actin content (maximum = 1.7- +/- 0.10-fold basal at 30 seconds). Concurrent measures of the actin content of individual actin pools (Triton-soluble and -insoluble F-actin and G-actin) show that at all times (0 to 30 seconds) only the Triton-insoluble F-actin pool grows (maximum = 2.81- +/- 0.73-fold basal at 30 seconds), whereas both the Triton-soluble and G-actin pools simultaneously decrease (50% decrease at 30 seconds). Concurrent growth of one F-actin pool (Triton-insoluble) and loss of another F-actin pool (Triton-soluble) emphasize the functional uniqueness of the F-actin pools and can occur only if the Triton- soluble F-actin anneals or cross-links filament-to-filament with the Triton-insoluble fraction or if the Triton-insoluble F-actin pool first depolymerizes to monomer, which is then added to the Triton-insoluble pool. Because from 0 to 30 seconds after FMLP activation G-actin never increases, but, like the Triton-soluble F-actin progressively decreases, the results suggest that F-actin growth results from simultaneous new filament growth by monomer addition to the Triton- insoluble F-actin and cytoskeletal remodelling by Triton-soluble F- actin annealing or cross-linking to Triton-insoluble F-actin. These findings offer important new insights into the mechanism(s) of actin polymerization in CTF-activated human PMNs.


1992 ◽  
Vol 116 (5) ◽  
pp. 1123-1134 ◽  
Author(s):  
M L Cano ◽  
L Cassimeris ◽  
M Fechheimer ◽  
S H Zigmond

While actin polymerization and depolymerization are both essential for cell movement, few studies have focused on actin depolymerization. In vivo, depolymerization can occur exceedingly rapidly and in a spatially defined manner: the F-actin in the lamellipodia depolymerizes in 30 s after chemoattractant removal (Cassimeris, L., H. McNeill, and S. H. Zigmond. 1990. J. Cell Biol. 110:1067-1075). To begin to understand the regulation of F-actin depolymerization, we have examined F-actin depolymerization in lysates of polymorphonuclear leukocytes (PMNs). Surprisingly, much of the cell F-actin, measured with a TRITC-phalloidin-binding assay, was stable after lysis in a physiological salt buffer (0.15 M KCl): approximately 50% of the F-actin did not depolymerize even after 18 h. This stable F-actin included lamellar F-actin which could still be visualized one hour after lysis by staining with TRITC-phalloidin and by EM. We investigated the basis for this stability. In lysates with cell concentrations greater than 10(7) cells/ml, sufficient globular actin (G-actin) was present to result in a net increase in F-actin. However, the F-actin stability was not solely because of the presence of free G-actin since addition of DNase I to the lysate did not increase the F-actin loss. Nor did it appear to be because of barbed end capping factors since cell lysates provided sites for barbed end polymerization of exogenous added actin. The stable F-actin existed in a macromolecular complex that pelleted at low gravitational forces. Increasing the salt concentration of the lysis buffer decreased the amount of F-actin that pelleted at low gravitational forces and increased the amount of F-actin that depolymerized. Various actin-binding and cross-linking proteins such as tropomyosin, alpha-actinin, and actin-binding protein pelleted with the stable F-actin. In addition, we found that alpha-actinin, a filament cross-linking protein, inhibited the rate of pyrenyl F-actin depolymerization. These results suggested that actin cross-linking proteins may contribute to the stability of cellular actin after lysis. The activity of crosslinkers may be regulated in vivo to allow rapid turnover of lamellipodia F-actin.


Blood ◽  
2001 ◽  
Vol 97 (1) ◽  
pp. 154-161 ◽  
Author(s):  
Ponlapat Rojnuckarin ◽  
Kenneth Kaushansky

Abstract With the recent cloning and characterization of thrombopoietin, appreciation of the molecular events surrounding megakaryocyte (MK) development is growing. However, the final stages of platelet formation are less well understood. Platelet production occurs after the formation of MK proplatelet processes. In a study to explore the molecular mechanisms underlying this process, mature MKs isolated from suspension murine bone marrow cell cultures were induced to form proplatelets by exposure to plasma, and the role of various cell-signaling pathways was assessed. The results showed that (1) bis-indolylmaleimide I, which blocks protein kinase C (PKC) activation; (2) down-modulation of conventional or novel classes of PKC by phorbol myristate acetate; and (3) ribozymes specific for PKCα each inhibited proplatelet formation. Inhibition of several MAP kinases, PI3 kinase, or protein kinase A failed to affect MK proplatelet formation. To gain further insights into the function of PKCα in proplatelet formation, its subcellular localization was investigated. In cultures containing active proplatelet formation, cytoplasmic polymerized actin was highly aggregated, its subcellular distribution was reorganized, and PKCα colocalized with the cellular actin aggregates. A number of MK manipulations, including blockade of integrin signaling with a disintegrin or inhibition of actin polymerization with cytochalasin D, interrupted actin reorganization, PKC relocalization, and proplatelet formation. These findings suggest an important role for PKCα in proplatelet development and suggest that it acts by altering actin dynamics in proplatelet-forming MKs. Identification of the upstream and downstream pathways involved in proplatelet formation should provide greater insights into thrombopoiesis, potentially allowing pharmacologic manipulation of the process.


1992 ◽  
Vol 119 (5) ◽  
pp. 1261-1270 ◽  
Author(s):  
L Cassimeris ◽  
D Safer ◽  
V T Nachmias ◽  
S H Zigmond

Thymosin beta 4 (T beta 4), a 5-kD peptide which binds G-actin and inhibits its polymerization (Safer, D., M. Elzinga, and V. T. Nachmias. 1991. J. Biol. Chem. 266:4029-4032), appears to be the major G-actin sequestering protein in human PMNs. In support of a previous study by Hannappel, E., and M. Van Kampen (1987. J. Chromatography. 397:279-285), we find that T beta 4 is an abundant peptide in these cells. By reverse phase HPLC of perchloric acid supernatants, human PMNs contain approximately 169 fg/cell +/- 90 fg/cell (SD), corresponding to a cytoplasmic concentration of approximately 149 +/- 80.5 microM. On non-denaturing polyacrylamide gels, a large fraction of G-actin in supernatants prepared from resting PMNs has a mobility similar to the G-actin/T beta 4 complex. Chemoattractant stimulation of PMNs results in a decrease in this G-actin/T beta 4 complex. To determine whether chemoattractant induced actin polymerization results from an inactivation of T beta 4, the G-actin sequestering activity of supernatants prepared from resting and chemoattractant stimulated cells was measured by comparing the rates of pyrenyl-actin polymerization from filament pointed ends. Pyrenyl actin polymerization was inhibited to a greater extent in supernatants from stimulated cells and these results are qualitatively consistent with T beta 4 being released as G-actin polymerizes, with no chemoattractant-induced change in its affinity for G-actin. The kinetics of bovine spleen T beta 4 binding to muscle pyrenyl G-actin are sufficiently rapid to accommodate the rapid changes in actin polymerization and depolymerization observed in vivo in response to chemoattractant addition and removal.


2003 ◽  
Vol 160 (3) ◽  
pp. 399-407 ◽  
Author(s):  
Raymond S. Maul ◽  
Yuhong Song ◽  
Kurt J. Amann ◽  
Sachi C. Gerbin ◽  
Thomas D. Pollard ◽  
...  

Epithelial protein lost in neoplasm (EPLIN) is a cytoskeleton-associated protein encoded by a gene that is down-regulated in transformed cells. EPLIN increases the number and size of actin stress fibers and inhibits membrane ruffling induced by Rac. EPLIN has at least two actin binding sites. Purified recombinant EPLIN inhibits actin filament depolymerization and cross-links filaments in bundles. EPLIN does not affect the kinetics of spontaneous actin polymerization or elongation at the barbed end, but inhibits branching nucleation of actin filaments by Arp2/3 complex. Side binding activity may stabilize filaments and account for the inhibition of nucleation mediated by Arp2/3 complex. We propose that EPLIN promotes the formation of stable actin filament structures such as stress fibers at the expense of more dynamic actin filament structures such as membrane ruffles. Reduced expression of EPLIN may contribute to the motility of invasive tumor cells.


2019 ◽  
Vol 25 (2) ◽  
pp. 378-387 ◽  
Author(s):  
Greta Miezinyte ◽  
Jolita Ostrauskaite ◽  
Egidija Rainosalo ◽  
Edvinas Skliutas ◽  
Mangirdas Malinauskas

Purpose The purpose of this paper is the design and investigation of novel acrylated epoxidized soybean oil-based photocurable systems as candidate materials for optical 3D printing. Design/methodology/approach Aromatic dithiols, benzene-1,3-dithiol or benzene-1,4-dithiol, were used as cross-linking agents of acrylated epoxidized soybean oil in these systems. Kinetics of photocross-linking was investigated by real-time photorheometry using two different photoinitiators, 2, 2-dimethoxy-2-phenylacetophenone or 2-hydroxy-2-methylpropiophenone, in different quantities. The effect of the initial composition on the rate of photocross-linking, mechanical, thermal properties and swelling of obtained polymers was investigated. Findings The rate of photocross-linking was higher, more cross-links and shorter polymer chains between cross-linking points of the network were formed when benzene-1,4-dithiol and 2, 2-dimethoxy-2-phenylacetophenone were used in compositions. The higher yield of insoluble fraction, glass transition temperatures and values of compressive modulus were obtained when benzene-1,3-dithiol and 2, 2-dimethoxy-2-phenylacetophenone were used in compositions. Originality/value This is the first study of acrylated epoxidized soybean oil-based thiol-ene system by real-time photorheometry. The designed novel photocurable systems based on acrylated epoxidized soybean oil and benzenedithiols are promising renewable photoresins for rapid optical 3D printing on demand.


2022 ◽  
Vol 12 ◽  
Author(s):  
Frédéric Larbret ◽  
Pierric Biber ◽  
Nicholas Dubois ◽  
Stoyan Ivanov ◽  
Laurence Lafanechere ◽  
...  

Actin networks are dynamically regulated through constant depolymerization and polymerization cycles. Although the fundamental mechanisms that govern these processes have been identified, the nature and role of post-translational modifications (PTMs) of actin and actin regulatory proteins are not completely understood. Here, we employed Actin CytoFRET, a method that we developed for real time detection of fluorescence resonance energy transfer (FRET) signals generated by actin dynamics, to screen a small library of PTM-interfering compounds on a biosensor leukemic T cell line. This strategy led to the identification of small molecule inhibitors of deubiquitinating enzymes (DUBs) as potent inducers of actin polymerization and blockers of chemotactic cell migration. The examination of the underlying mechanism further revealed that the actin depolymerizing protein cofilin represents a major effector of DUB inhibitor (DUBi)-induced actin reorganization. We found that DUB blockade results in the accumulation of polyubiquitinated proteins and ROS production, associated with cofilin oxidation and dephosphorylation on serine 3, which provokes uncontrolled actin polymerization impairing cell migration. Together, our study highlights DUBs as novel regulators of actin dynamics through ROS-dependent cofilin modulation, and shows that DUBi represent attractive novel tools to impede leukemic cell migration.


2010 ◽  
Vol 299 (3) ◽  
pp. C606-C613 ◽  
Author(s):  
Martin Gliem ◽  
Wolfgang-Moritz Heupel ◽  
Volker Spindler ◽  
Gregory S. Harms ◽  
Jens Waschke

In the human autoimmune blistering skin disease pemphigus vulgaris autoantibodies (PV-IgG), which are mainly directed against keratinocyte cell adhesion molecules desmoglein (Dsg) 3 and Dsg1, cause keratinocyte cell dissociation (acantholysis). Recent studies reported that loss of keratinocyte cell adhesion was accompanied by profound alterations of the actin cytoskeleton. Nevertheless, the relevance of actin reorganization in this process is unclear at present. In this study, we provide evidence for an important role of actin reorganization in pemphigus pathogenesis. In parallel to loss of cell adhesion and fragmentation of Dsg3 staining along cell borders, PV-IgG treatment resulted in striking changes in actin cytoskeleton organization. Moreover, in experiments using fluorescence recovery after photobleaching (FRAP), PV-IgG were detected to interfere with actin dynamics. Therefore, we investigated whether pharmacological manipulation of actin polymerization modulates pathogenic effects of PV-IgG. Pharmacological stabilization of actin filaments via jasplakinolide significantly blocked cell dissociation and Dsg3 fragmentation, whereas cytochalasin D-induced actin depolymerization strongly enhanced pathogenic effects of PV-IgG. To substantiate these findings, we studied whether the protective effects of Rho GTPases, which are potent regulators of the actin cytoskeleton and were shown to be involved in pemphigus pathogenesis, were dependent on modulation of actin dynamics. Cytotoxic necrotizing factor-1 (CNF-1)-mediated activation of Rho-GTPases enhanced the cortical junction-associated actin belt and blunted PV-IgG-induced cell dissociation. However, when actin polymerization was blocked under these conditions via addition of latrunculin B, the protective effects of CNF-1 were abrogated. Taken together, these experiments indicate that reorganization of cortical actin filaments is a critical step in PV-IgG-induced keratinocyte dissociation.


Sign in / Sign up

Export Citation Format

Share Document