TNF-α-induced endothelial cell adhesion molecule expression is cytochrome P-450 monooxygenase dependent

2003 ◽  
Vol 284 (2) ◽  
pp. C422-C428 ◽  
Author(s):  
Makoto Sasaki ◽  
D. Ostanin ◽  
J. W. Elrod ◽  
T. Oshima ◽  
P. Jordan ◽  
...  

It is strongly suspected that cytokine-induced gene expression in inflammation is oxidant mediated; however, the intracellular sources of signaling oxidants remain controversial. In inflammatory bowel disease (IBD) proinflammatory cytokines, such as TNF-α, trigger gene expression of endothelial adhesion molecules including mucosal addressin cell adhesion molecule-1 (MAdCAM-1). MAdCAM-1 plays an essential role in gut inflammation by governing the infiltration of leukocytes into the intestine. Several groups suggest that endothelial-derived reduced NADP (NADPH) oxidase produces signaling oxidants that control the expression of adhesion molecules (E-selectin, ICAM-1, VCAM-1). In addition to NADPH oxidase, cytochrome P-450 (CYP450) monooxygenases have also been shown to trigger cytokine responses. We found that in high endothelial venular cells (SVEC4-10), multiple inhibitors of CYP450 monooxygenases (SKF-525a, ketoconazole, troleandomycin, itraconazole) attenuated TNF-α induction of MAdCAM-1, whereas NADPH oxidase inhibition (PR-39) did not. Conversely, E-selectin, ICAM-1, and VCAM-1 induction requires both NADPH oxidase and CYP450-derived oxidants. We show here that MAdCAM-1 induction may depend exclusively on CYP450-derived oxidants, suggesting that CYP450 blockers might represent a possible novel therapeutic treatment for human IBD.

2012 ◽  
Vol 302 (7) ◽  
pp. C968-C978 ◽  
Author(s):  
Sreedevi Chinthamani ◽  
Olutayo Odusanwo ◽  
Nandini Mondal ◽  
Joel Nelson ◽  
Sriram Neelamegham ◽  
...  

Lipoxins are formed by leukocytes during cell-cell interactions with epithelial or endothelial cells. Native lipoxin A4(LXA4) binds to the G protein-coupled lipoxin receptors formyl peptide receptor 2 (FPR2)/ALX and CysLT1. Furthermore, LXA4inhibits recruitment of neutrophils, by attenuating chemotaxis, adhesion, and transmigration across vascular endothelial cells. LXA4thus appears to serve as an endogenous “stop signal” for immune cell-mediated tissue injury (Serhan CN; Annu Rev Immunol 25: 101–137, 2007). The role of LXA4has not been addressed in salivary epithelium, and little is known about its effects on vascular endothelium. Here, we determined that interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) receptor activation in vascular endothelium and salivary epithelium upregulated the expression of adhesion molecules that facilitates the binding of immune cells. We hypothesize that the activation of the ALX/FPR2 and/or CysLT1 receptors by LXA4decreases this cytokine-mediated upregulation of cell adhesion molecules that enhance lymphocyte binding to both the vascular endothelium and salivary epithelium. In agreement with this hypothesis, we observed that nanomolar concentrations of LXA4blocked IL-1β- and TNF-α-mediated upregulation of E-selectin and intercellular cell adhesion molecule-1 (ICAM-1) on human umbilical vein endothelial cells (HUVECs). Binding of Jurkat cells to stimulated HUVECs was abrogated by LXA4. Furthermore, LXA4preincubation with human submandibular gland cell line (HSG) also blocked TNF-α-mediated upregulation of vascular cell adhesion molecule-1 (VCAM-1) in these cells, and it reduced lymphocyte adhesion. These findings suggest that ALX/FPR2 and/or CysLT1 receptor activation in endothelial and epithelial cells blocks cytokine-induced adhesion molecule expression and consequent binding of lymphocytes, a critical event in the pathogenesis of Sjögren's syndrome (SS).


2003 ◽  
Vol 112 (8) ◽  
pp. 722-728 ◽  
Author(s):  
Issei Ichimiya ◽  
Masashi Suzuki ◽  
Kazuhide Yoshida ◽  
Goro Mogi

Secondary cultures from murine spiral ligament (SL) fibrocytes were stimulated with proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor–α (TNF-α), and expression of various adhesion molecules was investigated. Cultures without cytokine stimulation did not show positive immunostaining for vascular cell adhesion molecule–1 (VCAM-1), intercellular adhesion molecule–1 (ICAM-1), or mucosal addressin cell adhesion molecule–1 (MAdCAM-1). Although staining was also negative after stimulation with IL-1β, VCAM-1 and ICAM-1 staining was observed after the cells were stimulated with TNF-α. Reverse transcription-polymerase chain reaction analysis showed messenger RNAs for both VCAM-1 and ICAM-1 expression to be present after fibrocytes were stimulated with TNF-α. These data suggest that activated fibrocytes may cause inflammatory cells to persist in the SL. Given that SL fibrocytes may play a role in homeostasis of cochlear fluid and ion concentrations, prolongation of the inflammatory response could lead to fibrocyte damage that might ultimately result in cochlear malfunction.


Neurosurgery ◽  
2010 ◽  
Vol 67 (4) ◽  
pp. 976-983 ◽  
Author(s):  
Kingsley P Storer ◽  
Jian Tu ◽  
Marcus A Stoodley ◽  
Robert I Smee

Abstract BACKGROUND: Endothelial adhesion molecules may be important in the response of brain arteriovenous malformations (AVMs) to radiosurgery. In addition to a putative role in the occlusive process after radiosurgery, they may serve as potential targets for biological strategies to accelerate intravascular thrombosis. OBJECTIVE: To determine the temporal expression of E-selectin and vascular cell adhesion molecule-1 in an animal model of AVMs. METHODS: Forty-one Sprague-Dawley rats underwent surgical creation of a carotid-to-jugular anastomosis. Radiosurgery (25 Gy) was delivered to the model “nidus” after 6 weeks, and the tissue was harvested 1 to 84 days after radiosurgery. Control groups received sham irradiation. Immunofluorescence was used to study the expression of E-selectin and vascular cell adhesion molecule-1. RESULTS: Endothelial E-selectin expression was limited to regions receiving radiosurgery. E-selectin expression reached maximal expression at 24 hours after radiosurgery and was sustained for another 24 hours before gradually reducing to baseline at 84 days post-radiosurgery (P < .01). Vascular cell adhesion molecule-1 expression remained at the baseline level for the first week; a 50% increase was observed at 21 days after radiosurgery, which was sustained for another 3 weeks before returning to the baseline at 84 days after radiosurgery (P < .05). CONCLUSION: Radiosurgery stimulates early expression of E-selectin and delayed up-regulation of vascular cell adhesion molecule-1 on the endothelial surface of the AVM model nidus. Cell adhesion molecule expression may play an important role in the process leading to vascular obliteration after irradiation. These molecular alterations may be harnessed to promote thrombosis in the irradiated vasculature using a vascular targeting agent.


2019 ◽  
Vol 20 (21) ◽  
pp. 5383 ◽  
Author(s):  
Li Zhang ◽  
Feifei Wang ◽  
Qing Zhang ◽  
Qiuming Liang ◽  
Shumei Wang ◽  
...  

Inflammation is a key mediator in the progression of atherosclerosis (AS). Benzoinum, a resin secreted from the bark of Styrax tonkinensis, has been widely used as a form of traditional Chinese medicine in clinical settings to enhance cardiovascular function, but the active components of the resin responsible for those pharmaceutical effects remain unclear. To better clarify these components, a new phenylpropane derivative termed stybenpropol A was isolated from benzoinum and characterized via comprehensive spectra a nalysis. We further assessed how this phenylpropane derivative affected treatment of human umbilical vein endothelial cells (HUVECs) with tumor necrosis factor-α (TNF-α). Our results revealed that stybenpropol A reduced soluble intercellular cell adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), interleukin-8 (IL-8), and interleukin-1β (IL-1β) expression by ELISA, inhibited apoptosis, and accelerated nitric oxide (NO) release in TNF-α-treated HUVECs. We further found that stybenpropol A decreased VCAM-1, ICAM-1, Bax, and caspase-9 protein levels, and increased the protein levels of Bcl-2, IKK-β, and IκB-α. This study identified a new, natural phenylpropane derivative of benzoinum, and is the first to reveal its cytoprotective effects in the context of TNF-α-treated HUVECs via regulation of the NF-κB and caspase-9 signaling pathways.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Ting-Hein Lee ◽  
Joseph Miano

In pathological vascular remodeling, contractile vascular smooth muscle cells (VSMCs) switch their phenotype to highly proliferative and migratory states leading to neointimal formation. Inflammatory cell recruitment and infiltration, which is dependent on the increased expression of adhesion molecules on the endothelial cells, is a key event to initiate SMC phenotypic modulation in vascular remodeling. Serine carboxypeptidase 1 (scpep1), a novel protease containing the putative catalytic triad (Ser-Asp-His) common to all members of the serine protease family, has been proved to be involved in vascular remodeling by promoting SMC proliferation and migration in a catalytic triad-dependent manner. To determine whether Scpep1 modulates leukocyte adhesion and infiltration, a flow-induced model of vascular remodeling was conducted in wild-type (WT) or Scpep1 knockout (KO) mice. Scpep1-null mice show a decreased number of infiltrated leukocytes into the intima and media compared to WT mice. Further, mice devoid of Scpep1 show a dramatic reduction of vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1) expression in vessels in comparison with that of WT mice. Consistent with our in vivo data, the expression levels of ICAM-1 and VCAM-1 on human umbilical vein endothelial cells (HUVECs) transfected with SiRNA against Scpep1 were significantly decreased after TNF-α treatment. Taken together, these data suggest that Scpep1 may increase leukocyte extravasation by increasing the expression of VCAM-1 and ICAM-1 adhesion molecules.


1997 ◽  
Vol 139 (1) ◽  
pp. 219-228 ◽  
Author(s):  
Marek Litwin ◽  
Katherine Clark ◽  
Leanne Noack ◽  
Jill Furze ◽  
Michael Berndt ◽  
...  

Tumor necrosis factor–α, interleukin-1, and endotoxin stimulate the expression of vascular endothelial cell (EC) adhesion molecules. Here we describe a novel pathway of adhesion molecule induction that is independent of exogenous factors, but which is dependent on integrin signaling and cell–cell interactions. Cells plated onto gelatin, fibronectin, collagen or fibrinogen, or anti-integrin antibodies, expressed increased amounts of E-selectin, vascular cell adhesion molecule–1, and intercellular adhesion molecule–1. In contrast, ECs failed to express E-selectin when plated on poly-l-lysine or when plated on fibrinogen in the presence of attachment-inhibiting, cyclic Arg-Gly-Asp peptides. The duration and magnitude of adhesion molecule expression was dependent on EC density. Induction of E-selectin on ECs plated at confluent density was transient and returned to basal levels by 15 h after plating when only 7 ± 2% (n = 5) of cells were positive. In contrast, cells plated at low density displayed a 17-fold greater expression of E-selectin than did high density ECs with 57 ± 4% (n = 5) positive for E-selectin expression 15 h after plating, and significant expression still evident 72 h after plating. The confluency-dependent inhibition of expression of E-selectin was at least partly mediated through the cell junctional protein, platelet/endothelial cell adhesion molecule–1 (PECAM-1). Antibodies against PECAM-1, but not against VE-cadherin, increased E-selectin expression on confluent ECs. Co– culture of subconfluent ECs with PECAM-1– coated beads or with L cells transfected with full-length PECAM-1 or with a cytoplasmic truncation PECAM-1 mutant, inhibited E-selectin expression. In contrast, untransfected L cells or L cells transfected with an adhesion-defective domain 2 deletion PECAM-1 mutant failed to regulate E-selectin expression. In an in vitro model of wounding the wound front displayed an increase in the number of E-selectin–expressing cells, and also an increase in the intensity of expression of E-selectin positive cells compared to the nonwounded monolayer. Thus we propose that the EC junction, and in particular, the junctional molecule PECAM-1, is a powerful regulator of endothelial adhesiveness.


Sign in / Sign up

Export Citation Format

Share Document