scholarly journals Lymphatic function is regulated by a coordinated expression of lymphangiogenic and anti-lymphangiogenic cytokines

2012 ◽  
Vol 302 (2) ◽  
pp. C392-C404 ◽  
Author(s):  
Jamie C. Zampell ◽  
Tomer Avraham ◽  
Nicole Yoder ◽  
Nicholas Fort ◽  
Alan Yan ◽  
...  

Lymphangiogenic cytokines such as vascular endothelial growth factor-C (VEGF-C) are critically required for lymphatic regeneration; however, in some circumstances, lymphatic function is impaired despite normal or elevated levels of these cytokines. The recent identification of anti-lymphangiogenic molecules such as interferon-γ (IFN-γ), transforming growth factor-β1, and endostatin has led us to hypothesize that impaired lymphatic function may represent a dysregulated balance in the expression of pro/anti-lymphangiogenic stimuli. We observed that nude mice have significantly improved lymphatic function compared with wild-type mice in a tail model of lymphedema. We show that gradients of lymphatic fluid stasis regulate the expression of lymphangiogenic cytokines (VEGF-A, VEGF-C, and hepatocyte growth factor) and that paradoxically the expression of these molecules is increased in wild-type mice. More importantly, we show that as a consequence of T-cell-mediated inflammation, these same gradients also regulate expression patterns of anti-lymphangiogenic molecules corresponding temporally and spatially with impaired lymphatic function in wild-type mice. We show that neutralization of IFN-γ significantly increases inflammatory lymph node lymphangiogenesis independently of changes in VEGF-A or VEGF-C expression, suggesting that alterations in the balance of pro- and anti-lymphangiogenic cytokine expression can regulate lymphatic vessel formation. In conclusion, we show that gradients of lymphatic fluid stasis regulate not only the expression of pro-lymphangiogenic cytokines but also potent suppressors of lymphangiogenesis as a consequence of T-cell inflammation and that modulation of the balance between these stimuli can regulate lymphatic function.

Blood ◽  
2002 ◽  
Vol 100 (8) ◽  
pp. 2899-2907 ◽  
Author(s):  
Duncan Howie ◽  
Susumo Okamoto ◽  
Svend Rietdijk ◽  
Kareem Clarke ◽  
Ninghai Wang ◽  
...  

CD150 (signaling lymphocyte activation molecule [SLAM]) is a self-ligand cell surface glycoprotein expressed on T cells, B cells, macrophages, and dendritic cells. To further explore the role of CD150 signaling in costimulation and TH1 priming we have generated a panel of rat antimouse CD150 monoclonal antibodies. CD150 cell surface expression is up-regulated with rapid kinetics in activated T cells and lipopolysaccharide/interferon γ (IFN-γ)–activated macrophages. Anti-CD150 triggering induces strong costimulation of T cells triggered through CD3. DNA synthesis of murine T cells induced by anti-CD150 is not dependent on SLAM-associated protein (SAP, SH2D1A), because anti-CD150 induces similar levels of DNA synthesis in SAP−/− T cells. Antibodies to CD150 also enhance IFN-γ production both in wild-type and SAP−/− T cells during primary stimulation. The level of IFN-γ production is higher in SAP−/− T cells than in wild-type T cells. Anti-CD150 antibodies also synergize with interleukin 12 (IL-12) treatment in up-regulation of IL-12 receptor β2 mRNA during TH1 priming, and inhibit primary TH2 polarization in an IFN-γ–dependent fashion. Cross-linking CD150 on CD4 T cells induces rapid serine phosphorylation of Akt/PKB. We speculate that this is an important pathway contributing to CD150-mediated T-cell proliferation.


2004 ◽  
Vol 41 (4) ◽  
pp. 392-402 ◽  
Author(s):  
Elyane Poisson ◽  
James J. Sciote ◽  
Richard Koepsel ◽  
Gregory M. Cooper ◽  
Lynne A. Opperman ◽  
...  

Objective To describe the expression patterns of the various transforming growth factor-β (Tgf-β) isoforms, known to be involved in suture development, in the perisutural tissues of rabbits with naturally occurring craniosynostosis and relate such differential expression to the pathogenesis of premature suture fusion. Method Twenty-one coronal sutures were harvested from six wild-type control New Zealand White rabbits and five rabbits with familial coronal suture synostosis at 25 days of age for histomorphometric and immunohistochemical analyses. Tgf-β isoform immunoreactivity was assessed using indirect immunoperoxidase procedures with specific antibodies. Results Synostosed sutures had significantly (p < .01) greater bone area and relatively more osteoblasts and osteocytes in the osteogenic fronts, compared with wild-type sutures. Tgf-β isoform immunoreactivity showed differential staining patterns between wild-type and synostosed perisutural tissues. In wild-type sutures, Tgf-β1 and Tgf-β3 immunoreactivity was significantly (p < .001) greater than Tgf-β2 staining in all perisutural tissues. In synostosed sutures, the opposite pattern was observed, with Tgf-β2 immunoreactivity significantly (p < .001) greater than Tgf-β1 and Tgf-β3 in the osteogenic fronts, dura mater, and periosteum. Conclusions Findings from this study suggest that an overexpression of Tgf-β2, either in isolation or in association with an underexpression of Tgf-β1 and Tgf-β3, may be related to premature suture fusion (craniosynostosis) in this pathological rabbit model. These abnormal expression patterns may be involved in premature suture fusion either through increased cell proliferation, decreased apoptosis of the osteoblasts or both at the osteogenic fronts.


1999 ◽  
Vol 67 (11) ◽  
pp. 5730-5735 ◽  
Author(s):  
Catherine Othieno ◽  
Christina S. Hirsch ◽  
Beverly D. Hamilton ◽  
Katalin Wilkinson ◽  
Jerrold J. Ellner ◽  
...  

ABSTRACT Mycobacterium tuberculosis is associated with the activation of cytokine circuits both at sites of active tuberculosis in vivo and in cultures of mononuclear cells stimulated by M. tuberculosis or its components in vitro. Interactive stimulatory and/or inhibitory pathways are established between cytokines, which may result in potentiation or attenuation of the effects of each molecule on T-cell responses. Here we examined the interaction of transforming growth factor β1 (TGF-β1) and interleukin-10 (IL-10) in purified protein derivative (PPD)-stimulated human mononuclear cell cultures in vitro. TGF-β1 induced monocyte IL-10 (but not tumor necrosis factor alpha) production (by 70-fold, P < 0.02) and mRNA expression in the absence but not in the presence of PPD. Both exogenous recombinant (r) IL-10 and rTGF-β1 independently suppressed the production of PPD-induced gamma interferon (IFN-γ) in mononuclear cells from PPD skin test-positive individuals. Synergistic suppression of IFN-γ in cultures containing both rTGF-β1 and rIL-10 was only seen when the responder cell population were peripheral blood mononuclear cells (PBMC) and not monocyte-depleted mononuclear cells and when PBMC were pretreated with rTGF-β1 but not with rIL-10. Suppression of PPD-induced IFN-γ in PBMC containing both rTGF-β1 (1 ng/ml) and rIL-10 (100 pg/ml) was 1.5-fold higher (P< 0.05) than cultures containing TGF-β1 alone and 5.7-fold higher (P < 0.004) than cultures containing IL-10 alone. Also, neutralization of endogenous TGF-β1 and IL-10 together enhanced PPD-induced IFN-γ in PBMC in a synergistic manner. Thus, TGF-β1 and IL-10 together potentiate the downmodulatory effect on M. tuberculosis-induced T-cell production of IFN-γ, and TGF-β1 alone enhances IL-10 production. At sites of active M. tuberculosis infection, these interactions may be conducive to the suppression of mononuclear cell functions.


Blood ◽  
2009 ◽  
Vol 113 (10) ◽  
pp. 2229-2237 ◽  
Author(s):  
Ludmila Jirmanova ◽  
Dandapantula N. Sarma ◽  
Dragana Jankovic ◽  
Paul R. Mittelstadt ◽  
Jonathan D. Ashwell

AbstractT cells possess a p38 activation alternative pathway in which stimulation via the antigen receptor (T-cell receptor [TCR]) induces phosphorylation of p38α and β on Tyr323. To assess the contribution of this pathway to normal T-cell function, we generated p38α knockin mice in which Tyr323 was replaced with Phe (p38αY323F). TCR-mediated stimulation failed to activate p38αY323F as measured by phosphorylation of the Thr-Glu-Tyr activation motif and p38α catalytic activity. Cell-cycle entry was delayed in TCR-stimulated p38αY323F T cells, which also produced less interferon (IFN)–γ than wild-type T cells in response to TCR-mediated but not TCR-independent stimuli. p38αY323F mice immunized with T-helper 1 (Th1)–inducing antigens generated normal Th1 effector cells, but these cells produced less IFN-γ than wild-type cells when stimulated through the TCR. Thus, the Tyr323-dependent pathway and not the classic mitogen-activated protein (MAP) kinase cascade is the physiologic means of p38α activation through the TCR and is necessary for normal Th1 function but not Th1 generation.


2000 ◽  
Vol 192 (1) ◽  
pp. 117-122 ◽  
Author(s):  
Dyana K. Dalton ◽  
Laura Haynes ◽  
Cong-Qiu Chu ◽  
Susan L. Swain ◽  
Susan Wittmer

In Mycobacterium bovis Bacille Calmette-Guérin (BCG)-infected wild-type mice, there was a large expansion of an activated (CD44hi) splenic CD4 T cell population followed by a rapid contraction of this population to normal numbers. Contraction of the activated CD4 T cell population in wild-type mice was associated with increased apoptosis of activated CD4 T cells. In BCG-infected interferon (IFN)-γ knockout (KO) mice, the activated CD4 T cell population did not undergo apoptosis. These mice accumulated large numbers of CD4+CD44hi T cells that were responsive to mycobacterial antigens. Addition of IFN-γ to cultured splenocytes from BCG-infected IFN-γ KO mice induced apoptosis of activated CD4 T cells. IFN-γ–mediated apoptosis was abolished by depleting adherent cells or Mac-1+ spleen cells or by inhibiting nitric oxide synthase. Thus, IFN-γ is essential to a regulatory mechanism that eliminates activated CD4 T cells and maintains CD4 T cell homeostasis during an immune response.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2343-2343
Author(s):  
Ying Lu ◽  
Jian-Ming Li ◽  
Wayne Harris ◽  
Edmund Waller

Abstract Both host and donor dendritic cells (DCs) have been shown to play a critical role in regulating graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effect after MHC-mismatched bone marrow transplantation (BMT) (Shlomchik et al. Science 1999, Reddy et al. Nat Med 2005). In contrast to host DCs, much less is known about the precise mechanisms donor DCs may use to modulate donor T-cell activation and GVL activity. A clinical report has suggested an association between the number of donor plasmacytoid DC in the graft and leukemia relapses after allogeneic BMT (Waller et al. Blood 2001). Using allogeneic MHC-mismatched hematopoietic stem cell transplant (HSCT) (C57BL/6→B10.BR) in mice bearing the T lymphoblastic leukemia LBRM, we have previously reported that recipients transplanted with purified CD11b− DC in combination with purified HSC and T-cells had 45% increased long-term leukemia-free-survival, higher numbers of interferon-γ (IFN-γ) producing donor T-cells as well as higher levels of serum IFN-γ (Li et al. Blood 2007). The aim of the present work is to further define whether production of IFN-γ by donor T-cells is necessary for the augmentation of GVL effect seen with CD11b− donor DC and define the mechanism that donor CD11b− DC can augment GVL of donor T-cells without causing fatal GVHD. To evaluate the role for IFN-γ produced by donor T-cells, we used IFN-γ knockout (KO) mice as donors in the C57BL/6→B10.BR transplant model. Recipients of IFN-γ KO donor T-cells in combination with wild-type FACS-purified HSC and CD11b− DC died rapidly with 0% survival at day 80 compared with 65% survival among tumor-bearing recipients of donor CD11b− with wild-type HSC and T-cells and 75% survival in mice transplanted with wild-type cells in the absence of LBRM. Moreover, the addition of donor CD11b− DC to IFN-γ KO donor T-cells did not lead to further augmentation of GVHD. These data supported a role for donor T-cell-derived IFN-γ in the enhanced GVL activity seen among recipients of donor CD11b− DC,but did not explain the lack of increased GVHD. As a potent pro-inflammatory cytokine initiating immune response in GVHD, IFN-γ has also been demonstrated to show a suppressive effect during GVHD as a result of IFN-γ-inducible indoleamine-2,3-dioxygenase(IDO) gene expression. CD11b− DCs were freshly isolated from bone marrow of donor C57BL/6 mice, exposed to 100ng/ml IFN-γ for 18 hours, and the IDO expression was measured by intracellular staining. The results showed that following IFN-γ treatment, IDO levels of CD11b− DCs were up-regulated. Furthermore, in vitro co-culture of FACS-purified CD11b− DC with syngeneic T-cells in the presence of allogeneic antigen also demonstrated increased IDO levels on the co-cultured DCs. Taken together, our data support a model in which donor CD11b− DCs initially induce Th1 polarization of activated donor T-cells that secret high levels of IFN-γ in the lymph node microenvironment. High local levels of IFN-γ subsequently induce IDO expression in DC, resulting in down-modulation of T-cell allo-reactivity and GVHD. Thus, IFN-γ-induced IDO expression on CD11b− donor DCs appears to be a critical downstream event that inhibits continued T-cell activation and leads to less severe GVHD.


Sign in / Sign up

Export Citation Format

Share Document