scholarly journals α- and β-Monosaccharide transport in human erythrocytes

2009 ◽  
Vol 296 (1) ◽  
pp. C151-C161 ◽  
Author(s):  
Jeffry M. Leitch ◽  
Anthony Carruthers

Equilibrative sugar uptake in human erythrocytes is characterized by a rapid phase, which equilibrates 66% of the cell water, and by a slow phase, which equilibrates 33% of the cell water. This behavior has been attributed to the preferential transport of β-sugars by erythrocytes (Leitch JM, Carruthers A. Am J Physiol Cell Physiol 292: C974–C986, 2007). The present study tests this hypothesis. The anomer theory requires that the relative compartment sizes of rapid and slow transport phases are determined by the proportions of β- and α-sugar in aqueous solution. This is observed with d-glucose and 3- O-methylglucose but not with 2-deoxy-d-glucose and d-mannose. The anomer hypothesis predicts that the slow transport phase, which represents α-sugar transport, is eliminated when anomerization is accelerated to generate the more rapidly transported β-sugar. Exogenous, intracellular mutarotase accelerates anomerization but has no effect on transport. The anomer hypothesis requires that transport inhibitors inhibit rapid and slow transport phases equally. This is observed with the endofacial site inhibitor cytochalasin B but not with the exofacial site inhibitors maltose or phloretin, which inhibit only the rapid phase. Direct measurement of α- and β-sugar uptake demonstrates that erythrocytes transport α- and β-sugars with equal avidity. These findings refute the hypothesis that erythrocytes preferentially transport β-sugars. We demonstrate that biphasic 3- O-methylglucose equilibrium exchange kinetics refute the simple carrier hypothesis for protein-mediated sugar transport but are compatible with a fixed-site transport mechanism regulated by intracellular ATP and cell shape.

Botany ◽  
2009 ◽  
Vol 87 (8) ◽  
pp. 799-806 ◽  
Author(s):  
Deborah A. Alongi ◽  
Jeffrey P. Hill ◽  
Matthew J. Germino

Fern gametophytes are extremely shade-tolerant, potentially existing for long periods under conditions of extreme light limitation. Many previous studies have demonstrated an increase in gametophyte growth and incidence of spontaneous transition to sporophyte morphology (apogamy) under culture on media containing exogenous sugar. However, these studies did not verify sugar uptake or quantify relative growth on media containing different sugar types. Here, we examine the extent of heterotrophy and underlying mechanisms of sugar transport in photosynthetic gametophytes of the fern Ceratopteris richardii Brongn. Exogenous sugar uptake, growth, and sugar transport were evaluated with assays of exogenous glucose depletion, experimental culture of gametophytes under different sugar and light conditions, and bioinformatic approaches. The glucose from the growth media was significantly depleted by gametophytes growing under all conditions, especially those in the dark compared with those exposed to higher light. Gametophyte area increased similarly when cultured on equimolar concentrations of either glucose or the disaccharide sucrose, likely due to preferential uptake of one of the monomers of sucrose. Although at least one gene with similarity to sucrose transporters is expressed in germinating spores, our results suggest a reliance on monosaccharide transport for exogenous sugar uptake. Glucose assimilation in both light and dark conditions constitutes nutritional opportunism and may enhance gametophyte survival in very low light.


Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 524-530
Author(s):  
PA Janmey ◽  
SE Lind

Human blood depolymerizes filamentous (F-)actin. The interaction of actin filaments and monomers with human serum was studied by following the kinetics and extent of the depolymerization of pyrene-labeled F- actin and by analysis of serum proteins adhering to immobilized actin monomers. In physiologic Ca2+ concentrations, the depolymerization of F- actin proceeds in two stages: a rapid phase, attributed to direct severing of filaments by plasma gelsolin, and a slow phase attributed to the binding of actin monomers to vitamin D-binding protein (DBP). Without Ca2+, only the slow phase is observed. Human serum can completely depolymerize 10 to 18 mumol/L of actin, of which approximately 5 mumol/L occurs rapidly. Depolymerization can be accounted for by the normal serum concentrations of gelsolin and DBP. Fibrin(ogen) and fibronectin, which bind actin in vitro, do not contribute to the kinetics or extent of its depolymerization. Affinity chromatography and functional assays for the presence of gelsolin-actin complexes show that addition of G-actin to serum results in preferential formation of actin-DBP complexes, but that addition of F- actin to serum produces both gelsolin-actin complexes and DBP-actin complexes. The distinctive binding of actin monomers and polymers to these two serum proteins suggests a means by which their coordinated actions are maximized in vivo, from the standpoint of depolymerizing filaments and clearing monomers from the circulation.


2017 ◽  
Author(s):  
Maksym Bobrovskyy ◽  
Jane K. Frandsen ◽  
Jichuan Zhang ◽  
Anustup Poddar ◽  
Muhammad S. Azam ◽  
...  

ABSTRACTThe mechanisms by which small RNA (sRNA) regulators select and prioritize target mRNAs remain poorly understood, but serve to promote efficient responses to environmental cues and stresses. We sought to uncover mechanisms that establish regulatory hierarchy for a model sRNA, SgrS, found in enteric bacteria and produced under conditions of metabolic stress when sugar transport and metabolism are unbalanced. SgrS post-transcriptionally controls a nine-gene regulon to restore growth and homeostasis under stress conditions. An in vivo reporter system was used to quantify SgrS-dependent regulation of target genes and established that SgrS exhibits a clear preference for certain targets, and regulates those targets efficiently even at low SgrS levels. Higher SgrS concentrations are required to regulate other targets. The position of targets in the regulatory hierarchy is not well-correlated with the predicted thermodynamic stability of SgrS-mRNA interactions or the SgrS-mRNA binding affinity as measured in vitro. Detailed analyses of SgrS interaction with asd mRNA demonstrate that SgrS binds cooperatively to two sites and remodels asd mRNA secondary structure. SgrS binding at both sites increases the efficiency of asd mRNA regulation compared to mutants that have only a single SgrS binding site. Our results suggest that sRNA selection of target mRNAs and regulatory hierarchy are influenced by several molecular features. The sRNA-mRNA interaction, including the number and position of sRNA binding sites on the mRNA and cofactors like the RNA chaperone Hfq, seem to tune the efficiency of regulation of specific mRNA targets.IMPORTANCETo survive, bacteria must respond rapidly to stress and simultaneously maintain metabolic homeostasis. The small RNA (sRNA) SgrS mediates the response to stress arising from imbalanced sugar transport and metabolism. To coordinate the stress response, SgrS regulates genes involved in sugar uptake and metabolism. Intrinsic properties of sRNAs such as SgrS allow them to regulate extensive networks of genes. To date, sRNA regulation of targets has largely been studied in the context of “one sRNA-one target”, and little is known about coordination of multi-gene regulons and sRNA regulatory network structure. Here, we explore the molecular basis for regulatory hierarchy in sRNA regulons. Our results reveal a complex interplay of factors that influence the outcome of sRNA regulation. The number and location of sRNA binding sites on mRNA targets and the participation of an RNA chaperone dictate prioritized regulation of targets to promote an efficient response to stress.


1989 ◽  
Vol 256 (3) ◽  
pp. H867-H875 ◽  
Author(s):  
N. R. Danthuluri ◽  
R. C. Deth

To evaluate the influence of intracellular alkalinization on basal and agonist-induced vascular tone, we studied the effect of NH4Cl on rat aorta. NH4Cl induced a gradually developing contraction in a dose-dependent manner. Although the contractile response to 20 mM NH4Cl was associated with a latent period (LP) of 23.4 +/- 2.8 min, intracellular pH (pHi) measurements in cultured rat aortic smooth muscle cells showed that NH4Cl-induced intracellular alkalinization was immediate and transient, returning to basal pHi levels in about 30-35 min. Agents that elevate Ca2+, such as A23187 and high KCl, significantly reduced the LP associated with 20 mM NH4Cl-induced contraction. NH4Cl-induced contractions were sensitive to extracellular Ca2+ removal and to the addition of forskolin (1 microM); however, NH4Cl by itself did not cause Ca2+-influx as shown by 45Ca-uptake studies. Addition of 20 mM NH4Cl to precontracted tissues resulted in a transient relaxation, which was complete in approximately 10 min, followed by a contraction above the original level of tone. NH4Cl pretreatment caused time-dependent alterations in both the rapid and slow phases of phenylephrine and angiotensin II contractions. Rapid-phase of phenylephrine and angiotensin II contractions. Rapid-phase responses were diminished at shorter NH4Cl incubation times (10 min), whereas slow-phase response was augmented after a longer incubation (20 min). Overall, the vasorelaxant and vasoconstrictor effects induced by NH4Cl suggest a complex relationship between intracellular alkalinization and arterial contractility.


1995 ◽  
Vol 269 (1) ◽  
pp. L71-L77
Author(s):  
T. J. Ong ◽  
P. J. Kemp ◽  
R. E. Oliver ◽  
H. J. McArdle

In freshly isolated fetal guinea pig type II pneumocytes, zinc uptake is time and temperature dependent. Two pathways of uptake exist, resulting in a rapid phase that reaches a steady state within 30 s and a slower linear phase that does not attain a steady state within 60 min. Both processes exhibit saturation kinetics. The rapid phase has a maximal zinc uptake of 60.7 +/- 9.3 pmol.10(6) cells-1.30 s-1 and an apparent affinity (Kt) of 13.7 +/- 5.4 microM. The maximum velocity of uptake (Vmax) of the slower phase is 24.6 +/- 1.9 pmol.10(6) cells-1.min-1 with a Kt of 22.0 +/- 3.6 microM. Epinephrine, terbutaline, dibutyryl adenosine 3',5'-cyclic monophosphate, and dexamethasone have no significant effect on zinc uptake, while arachidonic acid (AA) stimulates. Dose-response data of AA-stimulated zinc uptake gives an apparent K0.5 of 0.42 +/- 0.01 microM and a Hill coefficient of 1. The maximal uptake in the rapid phase is significantly increased to 146.8 +/- 12.4 pmol.10(6) cells-1.30 s-1 and in the slow phase, the Vmax for zinc uptake is also significantly increased to 33.0 +/- 1.8 pmol.10(6) cells-1.min-1 by 10 microM AA. However, the Kt values in both processes remain unchanged after AA stimulation. The effect is not mediated by either leukotrienes or prostaglandins but can be mimicked by other unsaturated fatty acids.


2020 ◽  
Vol 71 (12) ◽  
pp. 3463-3474
Author(s):  
Dario Constantinescu ◽  
Gilles Vercambre ◽  
Michel Génard

Abstract We develop a model based on the biophysical representation of water and sugar flows between the pedicel, fruit xylem and phloem, and the fruit apoplast and symplast in order to identify diurnal patterns of transport in the pedicel–fruit system of peach. The model predicts that during the night water is mainly imported to the fruit through the xylem, and that fruit phloem–xylem transfer of water allows sugar concentrations in the phloem to be higher in the fruit than in the pedicel. This results in relatively high sugar transport to the fruit apoplast, leading to relatively high sugar uptake by the fruit symplast despite low sugar concentrations in the pedicel. At midday, the model predicts a xylem backflow of water driven by a lower pressure potential in the xylem than in the fruit apoplast. In addition, fruit xylem-to-phloem transfer of water decreases the fruit phloem sugar concentration, resulting in moderate sugar uptake by the fruit symplast, despite the high sugar concentration in the pedicel. Globally, the predicted fruit xylem–phloem water transfers buffer the sugar concentrations in the fruit phloem and apoplast, leading to a diurnally regulated uptake of sugar. A possible fruit xylem-to-apoplast recirculation of water through the fruit phloem reduces water lost by xylem backflow at midday.


2001 ◽  
Vol 43 (12) ◽  
pp. 133-138 ◽  
Author(s):  
M. V. Storey ◽  
N. J. Ashbolt

The persistence of two model enteric virions (Bacteroides fragilis phage B40-8 and coliphage MS-2) within pipe biofilms was investigated in situ in an urban distribution system. Biofilms were allowed to develop on uPVC and stainless steel (SS) coupons in a modified Robbins' device for 70 d within a 150 mm uPVC reticulation main. Coupons were then placed in annular reactors and slug dosed with B40-8 and MS-2 phages (108 pfu/mL). Pipe water velocity, pH and free chlorine were recorded during the experimental period. Biofilms on uPVC were generally more abundant (based on total bacterial counts, HPCs, total protein and total carbohydrate). Both B40-8 and MS-2 were incorporated into biofilms formed on uPVC and SS coupons (>104 and >103 pfu/μg protein respectively) and persisted for >30 d and 6 d respectively, reflecting biofilm biomass on the two pipe surfaces. Virion loss/inactivation from biofilm followed an initial rapid phase, followed by a very slow phase representing approximately 0.01% of the original virion population. Virions, therefore, have the potential to accumulate within distribution biofilm and problems could arise when clusters of biofilm-associated enteric virions become detached from the substrata by hydrodynamic forces or sudden changes in disinfection regime.


2020 ◽  
Vol 61 (9) ◽  
pp. 1669-1682
Author(s):  
Lina Yao ◽  
Changqing Ding ◽  
Xinyuan Hao ◽  
Jianming Zeng ◽  
Yajun Yang ◽  
...  

Abstract Sugars Will Eventually be Exported Transporters (SWEETs) are important in plant biological processes. Expression levels of CsSWEET1a and CsSWEET17 are induced by cold acclimation (CA) and cold stress in Camellia sinensis. Here, we found that CsSWEET17 was alternatively spliced, and its exclusion (Ex) transcript was associated with the CA process. Both plasma membrane-localized CsSWEET1a and CsSWEET17 transport hexoses, but cytoplasm-localized CsSWEET17-Ex does not. These results indicate that alternative splicing may be involved in regulating the function of SWEET transporters in response to low temperature in plants. The extra C-terminal of CsSWEET17, which is not found in the tonoplast fructose transporter AtSWEET17, did not affect its plasma membrane localization but promoted its sugar transport activities. The overexpression (OE) of CsSWEET1a and CsSWEET17 genes resulted in an increased sugar uptake in Arabidopsis, affecting plant germination and growth. The leaf and seed sizes of the CsSWEET17-OE lines were significantly larger than those of the wild type. Moreover, the OE of CsSWEET1a and CsSWEET17 significantly reduced the relative electrolyte leakage levels under freezing stress. Compared with the wild type, the expression of AtCWINV genes was suppressed in both CsSWEET1a-OE and CsSWEET17-OE lines, indicating the alteration in sugar contents in the cell walls of the OE lines. Furthermore, the interaction between CsSWEET1a and CsSWEET17 was confirmed using yeast two-hybrid and bimolecular fluorescence complementation assays. We showed that CsSWEET1a and CsSWEET17 form homo-/heterodimers in the plasma membrane and mediate the partitioning of sugars between the cytoplasm and the apoplast, thereby regulating plant growth and freezing tolerance.


1993 ◽  
Vol 10 (6) ◽  
pp. 1007-1018 ◽  
Author(s):  
Patricia Apkarian

AbstractMaturation of temporal resolution was investigated in a visual evoked potential study in 77 infants from birth to 9 months of age. Luminance evoked potential measures in response to homogeneous sinusoidal flickering light (1–64 Hz) were recorded under behavioral state-defined conditions. Behavioral state was determined by direct observation and by polygraphic recording of the electroencephalogram (EEG), eye movements (EOG), muscle activity (EMG), heart rate (ECG), and respiration. Temporal-frequency functions of the amplitude of the fundamental response across the temporal-frequency range were recorded during sleep and wakefulness. The highest temporal-frequency response recorded during wakefulness was accepted as a measure for inclusion in a growth function of temporal-frequency responsiveness. The resulting temporal resolution frequency vs. age function showed three separate maturational phases. Maturational phases were defined as (1) an initial slow phase from 1–32 days postnatal during which maturation of temporal vision is unremarkable; (2) an intermediate rapid phase of improvement from age 26 to 170 days; and (3) an overlapping but final slow phase from 151 to at least 270 days during which adult-like flicker resolution is approximated. This study suggests that the multiple maturational phases of the infant's responses to flickering light are due to maturational differences, which correspond with maturation of structural factors of brain function. Finally, across the age span tested, high-frequency responsivity was influenced significantly by the degree of infant arousal.


Sign in / Sign up

Export Citation Format

Share Document