high sugar concentration
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 14)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 118 (38) ◽  
pp. e2101242118
Author(s):  
Samina Naseeb ◽  
Federico Visinoni ◽  
Yue Hu ◽  
Alex J. Hinks Roberts ◽  
Agnieszka Maslowska ◽  
...  

Hybrids between species can harbor a combination of beneficial traits from each parent and may exhibit hybrid vigor, more readily adapting to new harsher environments. Interspecies hybrids are also sterile and therefore an evolutionary dead end unless fertility is restored, usually via auto-polyploidisation events. In the Saccharomyces genus, hybrids are readily found in nature and in industrial settings, where they have adapted to severe fermentative conditions. Due to their hybrid sterility, the development of new commercial yeast strains has so far been primarily conducted via selection methods rather than via further breeding. In this study, we overcame infertility by creating tetraploid intermediates of Saccharomyces interspecies hybrids to allow continuous multigenerational breeding. We incorporated nuclear and mitochondrial genetic diversity within each parental species, allowing for quantitative genetic analysis of traits exhibited by the hybrids and for nuclear–mitochondrial interactions to be assessed. Using pooled F12 generation segregants of different hybrids with extreme phenotype distributions, we identified quantitative trait loci (QTLs) for tolerance to high and low temperatures, high sugar concentration, high ethanol concentration, and acetic acid levels. We identified QTLs that are species specific, that are shared between species, as well as hybrid specific, in which the variants do not exhibit phenotypic differences in the original parental species. Moreover, we could distinguish between mitochondria-type–dependent and –independent traits. This study tackles the complexity of the genetic interactions and traits in hybrid species, bringing hybrids into the realm of full genetic analysis of diploid species, and paves the road for the biotechnological exploitation of yeast biodiversity.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 992
Author(s):  
Leonid Livshits ◽  
Gregory Barshtein ◽  
Dan Arbell ◽  
Alexander Gural ◽  
Carina Levin ◽  
...  

Red blood cell (RBC) transfusion is one of the most common therapeutic procedures in modern medicine. Although frequently lifesaving, it often has deleterious side effects. RBC quality is one of the critical factors for transfusion efficacy and safety. The role of various factors in the cells' ability to maintain their functionality during storage is widely discussed in professional literature. Thus, the extra- and intracellular factors inducing an accelerated RBC aging need to be identified and therapeutically modified. Despite the extensively studied in vivo effect of chronic hyperglycemia on RBC hemodynamic and metabolic properties, as well as on their lifespan, only limited attention has been directed at the high sugar concentration in RBCs storage media, a possible cause of damage to red blood cells. This mini-review aims to compare the biophysical and biochemical changes observed in the red blood cells during cold storage and in patients with non-insulin-dependent diabetes mellitus (NIDDM). Given the well-described corresponding RBC alterations in NIDDM and during cold storage, we may regard the stored (especially long-stored) RBCs as "quasi-diabetic". Keeping in mind that these RBC modifications may be crucial for the initial steps of microvascular pathogenesis, suitable preventive care for the transfused patients should be considered. We hope that our hypothesis will stimulate targeted experimental research to establish a relationship between a high sugar concentration in a storage medium and a deterioration in cells' functional properties during storage.


2021 ◽  
Author(s):  
S. Naseeb ◽  
F. Visinoni ◽  
Y. Hu ◽  
A. J. Hinks Roberts ◽  
A. Maslowska ◽  
...  

AbstractHybrids species can harbour a combination of beneficial traits from each parent and may exhibit hybrid vigour, more readily adapting to new harsher environments. Inter-species hybrids are also sterile and therefore an evolutionary dead-end unless fertility is restored, usually via auto-polyploidisation events. In the Saccharomyces genus, hybrids are readily found in nature and in industrial settings, where they have adapted to severe fermentative conditions. Due to their hybrid sterility, the development of new commercial yeast strains has so far been primarily conducted via selection methods rather than breeding. In this study, we overcame infertility by creating tetraploid intermediates of Saccharomyces inter-species hybrids, to allow continuous multigenerational breeding. We incorporated nuclear and mitochondrial genetic diversity within each parental species, allowing for quantitative genetic analysis of traits exhibited by the hybrids, and for nuclear-mitochondrial interactions to be assessed. Using pooled F12 generation segregants of different hybrids with extreme phenotype distributions, we identified QTLs for tolerance to high and low temperatures, high sugar concentration, high ethanol concentration, and acetic acid levels. We identified QTLs that are species specific, that are shared between species, as well as hybrid specific, where the variants do not exhibit phenotypic differences in the original parental species. Moreover, we could distinguish between mitochondria-type dependent and independent traits. This study tackles the complexity of the genetic interactions and traits in hybrid species, bringing hybrids into the realm of full genetic analysis of diploid species, and paves the road for the biotechnological exploitation of yeast biodiversity.


2020 ◽  
Vol 21 (19) ◽  
pp. 7095
Author(s):  
Ning Zhang ◽  
Maike Wang ◽  
Jie Huang ◽  
Leiyun Yang ◽  
Zhixue Wang ◽  
...  

Sugars, which are important signaling molecules, regulate diverse biological processes in plants. However, the convergent regulatory mechanisms governing these physiological activities have not been fully elucidated. MODIFIER OF snc1-1 (MOS1), a modulator of plant immunity, also regulates floral transition, cell cycle control, and other biological processes. However, there was no evidence of whether this protein was involved in sugar responses. In this study, we found that the loss-of-function mutant mos1-6 (mos1) was hypersensitive to sugar and was characterized by defective germination and shortened roots when grown on high-sugar medium. The expression of MOS1 was enhanced by sucrose. Hexokinase 1, an important gene involved in sugar signaling, was upregulated in the mos1 mutant compared to wild-type Col-0 in response to sugar. Furthermore, the mos1 mutant accumulated more anthocyanin than did wild-type Col-0 when grown on high-sugar concentration medium or under high light. MOS1 was found to regulate the expression of flavonoid and anthocyanin biosynthetic genes in response to exogenous sucrose and high-light stress but with different underlying mechanisms, showing multiple functions in addition to immunity regulation in plant development. Our results suggest that the immune regulator MOS1 serves as a coordinator in the regulatory network, governing immunity and other physiological processes.


UNISTEK ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 76-81
Author(s):  
Siti Maftukhah ◽  
Mutia Amyranti

Bioethanol is one of the most promising and eco-friendly alternatives to fossil fuels, which is produced from renewable sources. Bioethanol can be produced from different kinds of raw materials. Conventional crops such as corn and sugarcane are unable to meet the global demand of bioethanol production due to their primary value of food and feed. Agricultural wastes are cost effective, renewable and abundant. To do this, very high gravity (VHG) fermentation which involves use of medium containing high sugar concentration(>250g/L) must be implemented to achieve high ethanol concentration. However, VHG fermentation leads to significant stress for Saccharomyces cerevisiae due to osmotic pressure at the beginning of the fermentation and high ethanol content at the end. At this review, rice straw is the most abundant waste compared to the other major wastes and potentially produce 205 billion liters bioethanol per year, which is the highest among these four mentioned agricultural wastes.


2020 ◽  
Vol 71 (12) ◽  
pp. 3463-3474
Author(s):  
Dario Constantinescu ◽  
Gilles Vercambre ◽  
Michel Génard

Abstract We develop a model based on the biophysical representation of water and sugar flows between the pedicel, fruit xylem and phloem, and the fruit apoplast and symplast in order to identify diurnal patterns of transport in the pedicel–fruit system of peach. The model predicts that during the night water is mainly imported to the fruit through the xylem, and that fruit phloem–xylem transfer of water allows sugar concentrations in the phloem to be higher in the fruit than in the pedicel. This results in relatively high sugar transport to the fruit apoplast, leading to relatively high sugar uptake by the fruit symplast despite low sugar concentrations in the pedicel. At midday, the model predicts a xylem backflow of water driven by a lower pressure potential in the xylem than in the fruit apoplast. In addition, fruit xylem-to-phloem transfer of water decreases the fruit phloem sugar concentration, resulting in moderate sugar uptake by the fruit symplast, despite the high sugar concentration in the pedicel. Globally, the predicted fruit xylem–phloem water transfers buffer the sugar concentrations in the fruit phloem and apoplast, leading to a diurnally regulated uptake of sugar. A possible fruit xylem-to-apoplast recirculation of water through the fruit phloem reduces water lost by xylem backflow at midday.


2020 ◽  
Vol 58 (1) ◽  
pp. 76-83
Author(s):  
Borbála Oláhné Horváth ◽  
Diána Nyitrainé Sárdy ◽  
Nikolett Kellner ◽  
Ildikó Magyar ◽  

Starmerella bacillaris (synonym Candida zemplinina) is an important non-Saccharomyces yeast in winemaking with valuable oenological properties, accompanying Saccharomyces species in sweet wine fermentation, and has also been suggested for application as combined starter culture in dry or sweet wines. In this study, the major metabolites and nitrogen utilization of these yeasts are evaluated in the musts with high or extremely high sugar concentration. The change in the metabolic footprint of Saccharomyces cerevisiae, Saccharomyces uvarum and Starmerella bacillaris strains was compared when they were present as pure cultures in chemically defined grape juice medium with 220 and 320 g/L of sugar, to represent a fully matured and an overripe grape. Surprisingly, the extreme sugar concentration did not result in a considerable change in the rate of sugar consumption; only a shift of the sugar consumption curves could be noticed for all species, especially for Starmerella bacillaris. At the extreme sugar concentration, Starmerella bacillaris showed excellent glycerol production, moderate nitrogen demand together with a noticeable proline utilisation. The change in the overall metabolite pattern of Starmerella bacillaris allowed clear discrimination from the change of the Saccharomyces species. In this experiment, the adequacy of this non-Saccharomyces yeast for co-fermentation in juices with high sugar concentration is highlighted. Moreover, the results suggest that Starmerella bacillaris has a more active adaptation mechanism to extremely high sugar concentration.


2020 ◽  
Author(s):  
Jing Li ◽  
Yu Zhang ◽  
Suan Shi ◽  
Maobing Tu

Abstract Background Lignin played an important role in biochemical conversion of biomass to biofuels. A significant amount of lignin is precipitated on the surface of pretreated substrates after organosolv pretreatment. The effect of this residual lignin on enzymatic hydrolysis has been well understood, however, their effect on subsequent ABE fermentation is still unknown. Results To determine the effect of residual extractable lignin on Acetone-Butanol-Ethanol (ABE) fermentation in separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes, we compared ABE production from ethanol washed and unwashed substrates. The ethanol organosolv pretreated loblolly pine (OPLP) was used as the substrate. It was observed that butanol production from OPLP-UW (unwashed) and OPLP-W(washed) reached 8.16 and 1.69 g/L, respectively in SHF. The results showed that ABE production in SHF from OPLP-UW prevents an “acid crash” as comparing the OPLP-W. In SSF process, the “acid crash” occurred for both OPLP-W and OPLP-UW. The inhibitory extractable lignin intensified the “acid crash” for OPLP-UW and resulted in less ABE production than OPLP-W. The addition of detoxified prehydrolysates in SSF processes shortened the fermentation time and could potentially prevent the “acid crash”. Conclusions The results suggested that the residual extractable lignin in high sugar concentration could help ABE production by lowering the metabolic rate and preventing “acid crash” in SHF processes. However, it became unfavorable in SSF due to its inhibition of both enzymatic hydrolysis and ABE fermentation with low initial sugar concentration. It is essential to remove extractable lignin of substrates for ABE production in SSF processes. Also, a higher initial sugar concentration is needed to prevent the “acid crash” in SSF processes.


2020 ◽  
Author(s):  
Jing Li ◽  
Yu Zhang ◽  
Suan Shi ◽  
Maobing Tu

Abstract Background Lignin played an important role in biochemical conversion of biomass to biofuels. A significant amount of lignin is precipitated on the surface of pretreated substrates after organosolv pretreatment. The effect of this residual lignin on enzymatic hydrolysis has been well understood, however, their effect on subsequent ABE fermentation is still unknown. Results To determine the effect of residual extractable lignin on Acetone-Butanol-Ethanol (ABE) fermentation in separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes, we compared ABE production from ethanol washed and unwashed substrates. The ethanol organosolv pretreated loblolly pine (OPLP) was used as the substrate. It was observed that butanol production from OPLP-UW (unwashed) and OPLP-W(washed) reached 8.16 and 1.69 g/L, respectively in SHF. The results showed that ABE production in SHF from OPLP-UW prevents an “acid crash” as comparing the OPLP-W. In SSF process, the “acid crash” occurred for both OPLP-W and OPLP-UW. The inhibitory extractable lignin intensified the “acid crash” for OPLP-UW and resulted in less ABE production than OPLP-W. The addition of detoxified prehydrolysates in SSF processes shortened the fermentation time and could potentially prevent the “acid crash”. Conclusions The results suggested that the residual extractable lignin in high sugar concentration could help ABE production by lowering the metabolic rate and preventing “acid crash” in SHF processes. However, it became unfavorable in SSF due to its inhibition of both enzymatic hydrolysis and ABE fermentation with low initial sugar concentration. It is essential to remove extractable lignin of substrates for ABE production in SSF processes. Also, a higher initial sugar concentration is needed to prevent the “acid crash” in SSF processes.


2020 ◽  
Author(s):  
Jing Li ◽  
Yu Zhang ◽  
Suan Shi ◽  
Maobing Tu

Abstract Background Lignin played an important role in biochemical conversion of biomass to biofuels. A significant amount of lignin is precipitated on the surface of pretreated substrates after organosolv pretreatment. The effect of this residual lignin on enzymatic hydrolysis has been well understood, however, their effect on subsequent ABE fermentation is still unknown. Results To determine the effect of residual extractable lignin on Acetone-Butanol-Ethanol (ABE) fermentation in separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes, we compared ABE production from ethanol washed and unwashed substrates. The ethanol organosolv pretreated loblolly pine (OPLP) was used as the substrates. It was observed that butanol production from OPLP-UW (unwashed) and OPLP-W(washed) reached 8.16 and 1.69 g/L, respectively in SHF. The results showed that ABE production in SHF from OPLP-UW prevents an “acid crash” as comparing the OPLP-W. In SSF process, the “acid crash” occurred for both OPLP-W and OPLP-UW. The inhibitory extractable lignin intensified the “acid crash” for OPLP-UW and resulted in less ABE production than OPLP-W. The addition of detoxified prehydrolysates in SSF processes shortened the fermentation time and could potentially prevent the “acid crash”. Conclusions The results suggested that residual extractable lignin in high sugar concentration could help ABE production by slowing the metabolic rate and preventing “acid crash”. However, it became unfavorable in SSF due to its inhibition of both enzymatic hydrolysis and ABE fermentation with low initial sugar concentration. It is essential to remove extractable lignin of substrates for ABE production in SSF processes. And a higher initial sugar concentration is needed to prevent the “acid crash” in SSF processes.


Sign in / Sign up

Export Citation Format

Share Document