The effect of angiotensin II on intracellular pH is mediated by AT1 receptor translocation

2008 ◽  
Vol 295 (1) ◽  
pp. C138-C145 ◽  
Author(s):  
Karina Thieme ◽  
Débora Mai N. Eguti ◽  
Margarida Mello-Aires ◽  
Maria Oliveira-Souza

The effect of ANG II on intracellular pH (pHi) recovery rate and AT1 receptor translocation was investigated in transfected MDCK cells. The pHi recovery rate was evaluated by fluorescence microscopy using the fluorescent probe BCECF-AM. The human angiotensin II receptor isoform 1 (hAT1) translocation was analyzed by immunofluorescence and confocal microscope. Our data show that transfected cells in control situation have a pHi recovery rate of 0.219 ± 0.017 pH U/min ( n = 11). This value was similar to nontransfected cells [0.211 ± 0.009 pH U/min ( n = 12)]. Both values were significantly increased with ANG II (10−9 M) but not with ANG II (10−6 M). Losartan (10−7 M) and dimethyl-BAPTA-AM (10−7 M) decreased significantly the stimulatory effect of ANG II (10−9 M) and induced an increase in Na+/H+ exchanger 1 (NHE-1) activity with ANG II (10−6 M). Immunofluorescence studies indicated that in control situation, the hAT1 receptor was predominantly expressed in cytosol. However, it was translocated to plasma membrane with ANG II (10−9 M) and internalized with ANG II (10−6 M). Losartan (10−7 M) induced hAT1 translocation to plasma membrane in all studied groups. Dimethyl-BAPTA-AM (10−7 M) did not change the effect of ANG II (10−9 M) on the hAT1 receptor distribution but induced its accumulation at plasma membrane in cells treated with ANG II (10−6 M). With ionomycin (10−6 M), the receptor was accumulated in cytosol. The results indicate that, in MDCK cells, the effect of ANG II on NHE-1 activity is associated with ligand binding to AT1 receptor and intracellular signaling events related to AT1 translocation.

RSC Advances ◽  
2017 ◽  
Vol 7 (42) ◽  
pp. 26401-26410 ◽  
Author(s):  
Xiao-Lu Bao ◽  
Wei-Bo Zhu ◽  
Tian-Li Shan ◽  
Zhuo Wu ◽  
Rui-Jing Zhang ◽  
...  

A novel Ang II receptor 1 antagonist 1f was found to be an efficient, long-acting and safe antihypertensive drug candidate.


2004 ◽  
Vol 15 (3) ◽  
pp. 1024-1030 ◽  
Author(s):  
Guangwei Du ◽  
Ping Huang ◽  
Bruce T. Liang ◽  
Michael A. Frohman

Phospholipase D (PLD) is a key facilitator of multiple types of membrane vesicle trafficking events. Two PLD isoforms, PLD1 and PLD2, exist in mammals. Initial studies based on overexpression studies suggested that in resting cells, human PLD1 localized primarily to the Golgi and perinuclear vesicles in multiple cell types. In contrast, overexpressed mouse PLD2 was observed to localize primarily to the plasma membrane, although internalization on membrane vesicles was observed subsequent to serum stimulation. A recent report has suggested that the assignment of PLD2 to the plasma membrane is in error, because the endogenous isoform in rat secretory cells was imaged and found to be present primarily in the Golgi apparatus. We have reexamined this issue by using a monoclonal antibody specific for mouse PLD2, and find, as reported initially using overexpression studies, that endogenous mouse PLD2 is detected most readily at the plasma membrane in multiple cell types. In addition, we report that mouse, rat, and human PLD2 when overexpressed all similarly localize to the plasma membrane in cell lines from all three species. Finally, studies conducted using overexpression of wild-type active or dominant-negative isoforms of PLD2 and RNA interference-mediated targeting of PLD2 suggest that PLD2 functions at the plasma membrane to facilitate endocytosis of the angiotensin II type 1 receptor.


2011 ◽  
pp. 3-13
Author(s):  
Hiroji Uemura ◽  
Hitoshi Ishiguro ◽  
Yoshinobu Kubota

Angiotensin II (Ang-II) plays a key role as a vasoconstrictor in controlling blood pressure and electrolyte/fluid homeostasis. Recently it has also been shown that this peptide is a cytokine, acting as a growth factor in cardiovascular and stromal cells. In addition, the physiological function of Ang-II seems to be similar in prostate cancer and stromal cells. It is widely assumed that Ang-II facilitates the growth of both cells, and its receptor blockers (ARBs) have the potential to inhibit the growth of various cancer cells and tumors through the Ang-II receptor type 1 (AT1 receptor). The mechanism of cell growth inhibition by ARBs has been considered to be that of suppression of the signal transduction systems activated by growth factors or cytokines in prostate cancer cells, and suppression of angiogenesis. This review highlights the possible use of ARBs as novel agents for prostatic diseases including prostate cancer and benign hypertrophy, and covers related literature.


2005 ◽  
Vol 23 (3) ◽  
pp. 257-268 ◽  
Author(s):  
Victoria L. M. Herrera ◽  
Lorenz R. B. Ponce ◽  
Pia D. Bagamasbad ◽  
Benjamin D. VanPelt ◽  
Tamara Didishvili ◽  
...  

The dual endothelin-1/angiotensin II receptor (Dear) binds endothelin-1 (ET-1) and angiotensin II (ANG II) with equal affinities in the Dahl S/JRHS rat strain. To elucidate its physiological significance within the context of multiple receptor isoforms and diverse ET-1 and ANG II functions spanning blood pressure regulation, tumor proliferation, and angiogenesis, we characterized mouse Dear and Dear-deficient mice. Unlike null mutant models of ET-1, ANG II, and all other ET-1 and ANG II receptors, Dear−/− deficiency results in impaired angiogenesis, dysregulated neuroepithelial development, and embryonic lethality by embryonic day 12.5. Interestingly, mouse Dear does not bind ANG II, similar to Dahl R/JRHS rat Dear, but binds ET-1 and vascular endothelial growth factor (VEGF) signal peptide (VEGFsp) with equal affinities, suggesting a putative novel multifunction for VEGFsp and a parsimonious mechanism for coordination of VEGF-induced and Dear-mediated pathways. Consistent with its developmental angiogenic role, Dear inhibition results in decreased tumor growth in B16-F10 melanoma cell-induced subcutaneous tumor in female Dear+/−/C57BL6BC10 mice, but not in males (age 3.5 mo), and in 127Cs radiation-induced orthotopic mammary tumors in Sprague-Dawley female rats (age range 3–6.5 mo). Altogether, the data identify Dear as a new player in angiogenesis during development downstream to, and nonredundant with, VEGF-mediated pathways, as well as a putative modulator of tumor angiogenesis acting within a gender-specific paradigm.


1994 ◽  
Vol 141 (2) ◽  
pp. R5-R9 ◽  
Author(s):  
G. P. Vinson ◽  
M. M. Ho. ◽  
J.R. Puddefoot ◽  
R. Teja ◽  
S. Barker

ABSTRACT Little is known about the cellular localisation of the angiotensin II (AII) type 1 receptor (ATI) in the rat adrenal glomerulosa cell, but some studies have suggested that receptor internalisation and recycling may occur. Using a specific monoclonal antibody (6313/G2) to the first extracellular domain, we show here that most of the receptor is internalised in the unstimulated cell. When viable glomerulosa cells are incubated with 6313/G2, the receptor is transiently concentrated on the cell surface, and aldosterone output is stimulated. This stimulated output is enhanced by neither threshold nor maximal stimulatory concentrations of All amide, although the antibody does not inhibit All binding to the receptor. Conversely, the stimulatory actions of the antibody and those of ACTH are additive. The data suggest that recycling to the plasma membrane is constitutive, or regulated by unknown factors. Retention of the ATI receptor in the membrane is alone enough to allow sufficient G protein interaction to generate maximal stimulatory events.


2004 ◽  
Vol 19 (1) ◽  
pp. 106-116 ◽  
Author(s):  
Damian G. Romero ◽  
Maria Plonczynski ◽  
Gaston R. Vergara ◽  
Elise P. Gomez-Sanchez ◽  
Celso E. Gomez-Sanchez

Evidence for the dysregulation of aldosterone synthesis in cardiovascular pathophysiology has renewed interest in the control of its production. Cellular mechanisms by which angiotensin II (ANG II) stimulates aldosterone synthesis in the adrenal zona glomerulosa are incompletely understood. To elucidate the mechanism of intracellular signaling by ANG II stimulation in the adrenal, we have studied immediate-early regulated genes in human adrenal H295R cells using cDNA microarrays. H295R cells were stimulated with ANG II for 3 h. Gene expression was analyzed by microarray technology and validated by real-time RT-PCR. Eleven genes were found to be upregulated by ANG II. These encode the proteins for ferredoxin, Nor1, Nurr1, c6orf37, CAT-1, A20, MBLL, M-Ras, RhoB, GADD45α, and a novel protein designated FLJ45273 . Maximum expression levels for all genes occurred 3–6 h after ANG II stimulation. This increase was dose dependent and preceded maximal aldosterone production. Other aldosterone secretagogues, K+and endothelin-1 (ET-1), also induced the expression of these genes with variable efficiency depending on the gene and with lower potency than ANG II. ACTH had negligible effect on gene expression except for the CAT-1 and Nurr1 genes. These ANG II-stimulated genes are involved in several cellular functions and are good candidate effectors and regulators of ANG II-mediated effects in adrenal zona glomerulosa.


1997 ◽  
Vol 152 (3) ◽  
pp. 407-412 ◽  
Author(s):  
M Montiel ◽  
M C Caro ◽  
E Jiménez

Angiotensin II (Ang II) provokes rapid internalisation of its receptor from plasma membranes in isolated rat hepatocytes. After 10 min stimulation with Ang II, plasma membrane lost about 60% of its 125I-Ang II-binding capacity. Internalisation was blocked by phenylarsine oxide (PhAsO), whereas okadaic acid, which markedly reduced the sustained phase of calcium mobilization, did not have a preventive effect on Ang II–receptor complex sequestration. These data suggest that Ang II receptor internalisation is probably independent of a phosphorylation/dephosphorylation cycle of critical serine/threonine residues in the receptor molecule. To establish a relationship between sequestration of the Ang II receptor and the physical properties of the Ang II-binding sites, 125I-Ang II–receptor complex profiles were analysed by isoelectric focusing. In plasma membrane preparations two predominant Ang II-binding sites, migrating to pI 6·8 and 6·5 were found. After exposure to Ang II, cells lost 125I-Ang II-binding capacity to the Ang II–receptor complex migrating at pI 6·8 which was prevented in PhAsO-treated cells. Pretreatment of hepatocytes with okadaic acid did not modify Ang II–receptor complex profiles, indicating that the binding sites corresponding to pI 6·5 and pI 6·8 do not represent a phosphorylated and/or non-phosphorylated form of the Ang II receptor. The results show that the Ang II–receptor complex isoform at pI 6·8 represents a functional form of the type-1 Ang II receptor. Further studies are necessary to identify the Ang II-related nature of the binding sites corresponding to pI 6·5. Journal of Endocrinology (1997) 152, 407–412


1996 ◽  
Vol 271 (6) ◽  
pp. F1239-F1247 ◽  
Author(s):  
Z. Zhu ◽  
W. J. Arendshorst

This study provides an initial characterization of basic morphological properties of cultures of vascular smooth muscle cells (VSMC) from rat preglomerular resistance vessels and of the functional coupling of angiotensin II (ANG II) receptors to cytosolic free calcium concentration ([Ca2+]i (fura 2 fluorescence photometry). Renal VSMC were isolated from interlobular arteries and afferent arterioles (< 50 microns) using an iron oxide sieving method and compared with rat aortic VSMC cultured under similar conditions. Quiescent monolayers maintained uniform morphology and [Ca2+]i signaling profile between passages 3 and 10. Arteriolar and aortic VSMC were spindle shaped and expressed smooth muscle-specific alpha-actin and myosin heavy chains SM-1 and SM-2. ANG II caused a rapid increase in [Ca2+]i, followed by a sustained plateau phase at 50-60% of the peak value. The initial maximum [Ca2+]i responses were dose dependent and of similar magnitude in renal arteriolar and aortic VSMC. ANG II (10(-7) M) increased [Ca2+]i from 50 to 240 nM in arteriolar and from 57 to 201 nM in aortic VSMC (P < 0.001 for both). Inhibition of ANG II effects on [Ca2+]i revealed significant signaling through distinct AT-receptor subtypes (losartan and PD-123319 sensitive) in renal arteriolar VSMC. In contrast, only losartan was effective in aortic VSMC. The AT2-receptor ligand CGP-42112 had no effect in either vessel type. Our results demonstrate that cultured arteriolar VSMC have anatomical similarities to aortic VSMC and functional differences in AT-receptor signaling in response to ANG II. This novel preparation should provide a useful approach with which to investigate cellular mechanisms concerning receptor coupling to signaling pathways involved in vascular reactivity of arteriolar VSMC in the microcirculation in general and the kidney in particular.


1992 ◽  
Vol 262 (3) ◽  
pp. F432-F441 ◽  
Author(s):  
D. Chansel ◽  
S. Czekalski ◽  
P. Pham ◽  
R. Ardaillou

This study was designed to identify the subtypes of angiotensin II (ANG II) receptors present on glomeruli and glomerular mesangial cells and establish their functional significance. Dup 753 and its metabolite EXP 3174, two nonpeptide ANG II-1 receptor (AT1) antagonists, displaced 125I-ANG II and its analogue 125I-[Sar1,Ala8]ANG II from their binding sites in rat and human glomeruli and cultured human mesangial cells, whereas CGP 42112 A and PD 123177, two ANG II-2 receptor (AT2) antagonists, exhibited little displacing activity. Dup 753 and EXP 3174 did not modify the dissociation constant (Kd) value but markedly decreased the number of sites of 125I-[Sar1,Ala8]ANG II binding. The addition of PD 123177 did not further inhibit binding when all AT1 sites were occupied by Dup 753. Binding was markedly reduced by dithiothreitol. EXP 3174 and Dup 753 inhibited the main biological functions of ANG II in mesangial cells including increases in intracellular calcium concentration, PGE2 production, and protein synthesis. PD 123177 was also active but at concentrations 1,000- to 10,000-fold greater than those of AT1 antagonists. These results indicate that 1) only AT1 receptors are present in glomeruli and glomerular mesangial cells; 2) these receptors mediate the functional responses to ANG II; 3) the nonpeptide AT1 antagonists behave as noncompetitive inhibitors; and 4) high concentrations of the nonpeptide AT2 antagonists can recognize AT1 sites.


1993 ◽  
Vol 265 (1) ◽  
pp. G21-G27 ◽  
Author(s):  
L. A. Sechi ◽  
J. P. Valentin ◽  
C. A. Griffin ◽  
M. Schambelan

Angiotensin II is known to regulate motility and ion and water absorption in the intestine. These effects are presumed to be mediated by angiotensin II (ANG II) receptors that are present in both mucosal and muscular layers throughout the intestine. To evaluate tissue density and distribution of ANG II receptor subtypes (AT1 and AT2), we performed an in situ autoradiographic study on jejunum, ileum, and colon of Sprague-Dawley rats. Tissue sections (10 microns) were incubated with 500 pM 125I-[Sar1,Ile8]ANG II, fixed with paraformaldehyde vapors, and coated with photographic emulsion. Binding specificity was verified by competition with unlabeled [Sar1]ANG II (10 microM). AT1 and AT2 receptor distribution was characterized by competition with the nonpeptide antagonists losartan (10 microM) and PD123177 (10 microM), respectively, and the density of receptors was quantified by counting the silver grains overlying the different layers of intestinal wall. Specific binding was moderately abundant in the mucosa and the muscularis of both jejunum and ileum, whereas no binding was present in the submucosa and the serosa. Losartan inhibited 86% of radioligand binding to the mucosa in both jejunum and ileum, whereas PD123177 inhibited only 10%. The combination of the two compounds inhibited 96% of specific binding. In the colon, binding was significantly more abundant in the muscularis than in the mucosa. In this segment, losartan inhibited 90% and PD123177 16% of specific binding to muscularis. The combination of these compounds reduced binding by 97%. Thus the predominant ANG II receptor in all intestinal segments is AT1, but a small population of AT2 receptors also seems to be present.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document