scholarly journals Corepressor MMTR/DMAP1 Is Involved in both Histone Deacetylase 1- and TFIIH-Mediated Transcriptional Repression

2007 ◽  
Vol 27 (10) ◽  
pp. 3578-3588 ◽  
Author(s):  
Bong Gu Kang ◽  
June Ho Shin ◽  
Jae Kyu Yi ◽  
Ho Chul Kang ◽  
Jong Joo Lee ◽  
...  

ABSTRACT A transcription corepressor, MAT1-mediated transcriptional repressor (MMTR), was found in mouse embryonic stem cell lines. MMTR orthologs (DMAP1) are found in a wide variety of life forms from yeasts to humans. MMTR down-regulation in differentiating mouse embryonic stem cells in vitro resulted in activation of many unrelated genes, suggesting its role as a general transcriptional repressor. In luciferase reporter assays, the transcriptional repression activity resided at amino acids 221 to 468. Histone deacetylase 1 (HDAC1) interacts with MMTR both in vitro and in vivo and also interacts with MMTR in the nucleus. Interestingly, MMTR activity was only partially rescued by competition with dominant-negative HDAC1(H141A) or by treatment with an HDAC inhibitor, trichostatin A (TSA). To identify the protein responsible for HDAC1-independent MMTR activity, we performed a yeast two-hybrid screen with the full-length MMTR coding sequence as bait and found MAT1. MAT1 is an assembly/targeting factor for cyclin-dependent kinase-activating kinase which constitutes a subcomplex of TFIIH. The coiled-coil domain in the middle of MAT1 was confirmed to interact with the C-terminal half of MMTR, and the MMTR-mediated transcriptional repression activity was completely restored by MAT1 in the presence of TSA. Moreover, intact MMTR was required to inhibit phosphorylation of the C-terminal domain in the RNA polymerase II largest subunit by TFIIH kinase in vitro. Taken together, these data strongly suggest that MMTR is part of the basic cellular machinery for a wide range of transcriptional regulation via interaction with TFIIH and HDAC.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2785-2785
Author(s):  
Brian T. Zafonte ◽  
Tara L. Huber ◽  
Gordon Keller ◽  
Todd Evans

Abstract Bone morphogenetic proteins (BMPs) comprise a sub-family of TGF-beta-like molecules that exert a wide range of biological activities during development, and are essential for normal hematopoiesis. However, the precise stage in development that BMP signaling regulates hematopoiesis is not defined. Three proteins, Smad1, Smad5, and Smad8 transmit BMP signals to the nucleus to activate the expression of hematopoietic-specific transcription factors. These Smads are homologous in their sequences, and appear to be regulated similarly, however their specificity in regulating hematopoiesis remains undefined. Although Smad proteins are regulated post-translationally, their expression is also under transcriptional control during development. We examined the specificity of Smad1/5/8 activity in the context of primitive erythropoiesis, using the mouse embryonic stem cell /embryoid body (ES/EB) system. We exploited ES cells with GFP targeted to the brachyury locus, in order to identify specific sub-sets of progenitors. Smad1 transcript levels are initially upregulated as ES cells become fated to mesoderm and hematopoietic progenitors, but the levels are significantly decreased in cells derived from differentiating primitive erythroid colonies. In contrast, Smad5 transcript levels show the opposite profile, being more correlated with erythroid differentiation. To directly assess the role of these Smads during erythropoiesis, their activity is being manipulated in ES cells during the commitment phases of embryonic hematopoiesis. For this purpose, inducible ES cell lines were generated capable of forcing the expression of wildtype Smad1 or Smad5, or a dominant-negative isoform of Smad5, at any stage of ES/EB development. Colony assays were used to analyze quantitatively the hematopoietic potential of these cells. Forced expression of Smad1 results in a marked increase in primitive red blood cell colony formation as compared to control ES cells. Maintenance of Smad1 expression does not appear to inhibit terminal differentiation. Based on a time-study of the induction, the effect on erythoid colonies could be due to expansion of earlier progenitors. Current experiments using the in vitro blast assay are examining the direct effect of Smad1 expression on earlier (hemangioblast) development. This data, and analogous analyses of cells induced to express Smad5 or the dominant-negative Smad isoform are in progress and will be presented. These studies should facilitate our understanding of the specificity of BMP-regulated Smads during commitment and differentiation of embryonic stem cells and hematopoietic progenitors.


2016 ◽  
Vol 473 (20) ◽  
pp. 3639-3654 ◽  
Author(s):  
Yang Zhou ◽  
Qing-Song Dai ◽  
Shi-Chang Zhu ◽  
Yue-Hua Han ◽  
Hai-Long Han ◽  
...  

MiR-592 has been identified as a neural-enriched microRNA, plays an important role in mNPCs differentiation, could induce astrogliogenesis differentiation arrest or/and enhance neurogenesis in vitro. Previous studies showed that long noncoding RNAs (lncRNAs) were involved in the neuronal development and activity. To investigate the role of miR-592 in neurogenesis, we described the expression profile of lncRNAs in miR-592 knockout mouse embryonic stem cells (mESCs) and the corresponding normal mESCs by microarray. By the microarray analysis and luciferase reporter assays, we demonstrated that lncRNA - AK048794, regulated by transcription factor GATA1, functioned as a competing endogenous RNA (ceRNA) for miR-592 and led to the de-repression of its endogenous target FAM91A1, which is involved in mESC pluripotency maintenance. Taken together, these observations imply that AK048794 modulated the expression of multiple genes involved in mESC pluripotency maintenance by acting as a ceRNA for miR-592, which may build up the link between the regulatory miRNA network and mESC pluripotency.


1999 ◽  
Vol 19 (8) ◽  
pp. 5504-5511 ◽  
Author(s):  
Angelika Doetzlhofer ◽  
Hans Rotheneder ◽  
Gerda Lagger ◽  
Manfred Koranda ◽  
Vladislav Kurtev ◽  
...  

ABSTRACT The members of the Sp1 transcription factor family can act as both negative and positive regulators of gene expression. Here we show that Sp1 can be a target for histone deacetylase 1 (HDAC1)-mediated transcriptional repression. The histone deacetylase inhibitor trichostatin A activates the chromosomally integrated murine thymidine kinase promoter in an Sp1-dependent manner. Coimmunoprecipitation experiments with Swiss 3T3 fibroblasts and 293 cells demonstrate that Sp1 and HDAC1 can be part of the same complex. The interaction between Sp1 and HDAC1 is direct and requires the carboxy-terminal domain of Sp1. Previously we have shown that the C terminus of Sp1 is necessary for the interaction with the transcription factor E2F1 (J. Karlseder, H. Rotheneder, and E. Wintersberger, Mol. Cell. Biol. 16:1659–1667, 1996). Coexpression of E2F1 interferes with HDAC1 binding to Sp1 and abolishes Sp1-mediated transcriptional repression. Our results indicate that one component of Sp1-dependent gene regulation involves competition between the transcriptional repressor HDAC1 and the transactivating factor E2F1.


2020 ◽  
Vol 319 (2) ◽  
pp. C381-C391
Author(s):  
Hang Xue ◽  
Jianpeng Liu ◽  
Lin Shi ◽  
Hongfa Yang

Several microRNAs (miRNAs or miRs) regulate cerebral ischemic injury outcomes; however, little is known about the role of miR-539-5p during cerebral ischemic injury or the postischemic state. Cerebral ischemic injury was modeled in vitro by exposing human cortical neurons to oxygen-glucose deprivation (OGD) and in vivo by occluding the middle cerebral artery (MCAO) in a rat model. The effects of miR-539-5p, histone deacetylase 1 (HDAC1), and early growth response 2 (EGR2) on cerebral ischemia were investigated using gain- and loss-of-function experiments. We identified changes in miR-539-5p, HDAC1, EGR2, and phosphorylated c-Jun NH2-terminal kinase (JNK). The interaction among miR-539-5p, HDAC1, and EGR2 was determined by dual luciferase reporter gene assay, chromatin immunoprecipitation, and coimmunoprecipitation. We also investigated the effects on cell viability and apoptosis and changes in inflammatory cytokine expression and spatial memory on MCAO rats. miR-539-5p and EGR2 were poorly expressed, while HDAC1 was highly expressed in OGD-treated HCN-2 cells. miR-539-5p targeted HDAC1, while HDAC1 prevented acetylation of EGR2 resulting in its downregulation and subsequent activation of the JNK pathway. Overexpression of miR-539-5p or EGR2 or silencing HDAC1 improved viability and reduced apoptosis of OGD-treated HCN-2 cells in vitro. Furthermore, overexpression of miR-539-5p improved spatial memory, while decreasing cell apoptosis and inflammation in MCAO rats. Collectively, these data suggest that miR-539-5p targets HDAC1 to upregulate EGR2, thus blocking the JNK signaling pathway, by which cerebral ischemic injury is alleviated.


2003 ◽  
Vol 369 (3) ◽  
pp. 651-657 ◽  
Author(s):  
Liu YANG ◽  
Qi MEI ◽  
Anna ZIELINSKA-KWIATKOWSKA ◽  
Yoshito MATSUI ◽  
Michael L. BLACKBURN ◽  
...  

Covalent modifications of histone tails play important roles in gene transcription and silencing. We recently identified an ERG (ets-related gene)-associated protein with a SET (suppressor of variegation, enhancer of zest and trithorax) domain (ESET) that was found to have the activity of a histone H3-specific methyltransferase. In the present study, we investigated the interaction of ESET with other chromatin remodelling factors. We show that ESET histone methyltransferase associates with histone deacetylase 1 (HDAC1) and HDAC2, and that ESET also interacts with the transcription co-repressors mSin3A and mSin3B. Deletion analysis of ESET reveals that an N-terminal region containing a tudor domain is responsible for interaction with mSin3A/B and association with HDAC1/2, and that truncation of ESET enhances its binding to mSin3. When bound to a promoter, ESET represses the transcription of a downstream luciferase reporter gene. This repression by ESET is independent of its histone methyltransferase activity, but correlates with its binding to the mSin3 co-repressors. In addition, the repression can be partially reversed by treatment with the HDAC inhibitor trichostatin A. Taken together, these data suggest that ESET histone methyltransferase can form a large, multi-protein complex(es) with mSin3A/B co-repressors and HDAC1/2 that participates in multiple pathways of transcriptional repression.


2003 ◽  
Vol 77 (7) ◽  
pp. 4261-4272 ◽  
Author(s):  
Jason S. Knight ◽  
Ke Lan ◽  
Chitra Subramanian ◽  
Erle S. Robertson

ABSTRACT Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA3C) is a known regulatory transcription factor that has been shown to interact with histone deacetylase 1 (HDAC1) when cotransfected in human cell lines and by in vitro binding experiments. Previous studies have shown that EBNA3C interacts with p300 and prothymosin alpha (ProTα) in EBV-infected cells and may be involved in recruiting acetyltransferases to the chromatin for acetylation of histones and transcriptional activation. EBNA3C has also been shown to function as a repressor of transcription when directed to promoters. In this report, we show that EBNA3C complexed with ProTα can also recruit deacetylase activity and associates in a complex that includes HDAC1 and HDAC2 in human B cells. A complex of EBNA3C and ProTα coimmunoprecipitated with HDAC1 and HDAC2 in cell lines stably expressing EBNA3C. Additionally, this complex associated with the mSin3A and NCoR corepressors in EBNA3C-expressing cell lines and may function in a complex with additional transcription factors known to be repressors of transcription. EBNA3C in complex with ProTα recruited deacetylase activity in cell lines stably expressing EBNA3C, and this activity was shown to be partially sensitive to trichostatin A (TSA). This suggests an association with other deacetylases that are insensitive to the general inhibitory effects of TSA, as the entire activity was not abolished in multiple assays. The association between EBNA3C and the corepressors as well as HDACs is likely to depend on the presence of ProTα in the complex. Immunoprecipitation with anti-ProTα antibody immunoprecipitated EBNA3C and the other repressors, whereas immunoprecipitation with anti-EBNA3C antibody resulted in little or no association with these molecules associated with transcription repression. Clearly, EBNA3C functions as a component of a number of dynamic complexes which function in repression and activation of transcription.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Xiaohong Zhou ◽  
Christina Monnie ◽  
Maria DeLucia ◽  
Jinwoo Ahn

Abstract Background Vpr is a virion-associated protein that is encoded by lentiviruses and serves to counteract intrinsic immunity factors that restrict infection. HIV-1 Vpr mediates proteasome-dependent degradation of several DNA repair/modification proteins. Mechanistically, Vpr directly recruits cellular targets onto DCAF1, a substrate receptor of Cullin 4 RING E3 ubiquitin ligase (CRL4) for poly-ubiquitination. Further, Vpr can mediate poly-ubiquitination of DCAF1-interacting proteins by the CRL4. Because Vpr-mediated degradation of its known targets can not explain the primary cell-cycle arrest phenotype that Vpr expression induces, we surveyed the literature for DNA-repair-associated proteins that interact with the CRL4-DCAF1. One such protein is SIRT7, a deacetylase of histone 3 that belongs to the Sirtuin family and regulates a wide range of cellular processes. We wondered whether Vpr can mediate degradation of SIRT7 via the CRL4-DCAF1. Methods HEK293T cells were transfected with cocktails of plasmids expressing DCAF1, DDB1, SIRT7 and Vpr. Ectopic and endogeneous levels of SIRT7 were monitered by immunoblotting and protein–protein interactions were assessed by immunoprecipitation. For in vitro reconstitution assays, recombinant CRL4-DCAF1-Vpr complexes and SIRT7 were prepared and poly-ubiqutination of SIRT7 was monitored with immunoblotting. Results We demonstrate SIRT7 polyubiquitination and degradation upon Vpr expression. Specifically, SIRT7 is shown to interact with the CRL4-DCAF1 complex, and expression of Vpr in HEK293T cells results in SIRT7 degradation, which is partially rescued by CRL inhibitor MNL4924 and proteasome inhibitor MG132. Further, in vitro reconstitution assays show that Vpr induces poly-ubiquitination of SIRT7 by the CRL4-DCAF1. Importantly, we find that Vpr from several different HIV-1 strains, but not HIV-2 strains, mediates SIRT7 poly-ubiquitination in the reconstitution assay and degradation in cells. Finally, we show that SIRT7 degradation by Vpr is independent of the known, distinctive phenotype of Vpr-induced cell cycle arrest at the G2 phase, Conclusions Targeting histone deacetylase SIRT7 for degradation is a conserved feature of HIV-1 Vpr. Altogether, our findings reveal that HIV-1 Vpr mediates down-regulation of SIRT7 by a mechanism that does not involve novel target recruitment to the CRL4-DCAF1 but instead involves regulation of the E3 ligase activity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng-Fei Xu ◽  
Ricardo Moraes Borges ◽  
Jonathan Fillatre ◽  
Maraysa de Oliveira-Melo ◽  
Tao Cheng ◽  
...  

AbstractGenerating properly differentiated embryonic structures in vitro from pluripotent stem cells remains a challenge. Here we show that instruction of aggregates of mouse embryonic stem cells with an experimentally engineered morphogen signalling centre, that functions as an organizer, results in the development of embryo-like entities (embryoids). In situ hybridization, immunolabelling, cell tracking and transcriptomic analyses show that these embryoids form the three germ layers through a gastrulation process and that they exhibit a wide range of developmental structures, highly similar to neurula-stage mouse embryos. Embryoids are organized around an axial chordamesoderm, with a dorsal neural plate that displays histological properties similar to the murine embryo neuroepithelium and that folds into a neural tube patterned antero-posteriorly from the posterior midbrain to the tip of the tail. Lateral to the chordamesoderm, embryoids display somitic and intermediate mesoderm, with beating cardiac tissue anteriorly and formation of a vasculature network. Ventrally, embryoids differentiate a primitive gut tube, which is patterned both antero-posteriorly and dorso-ventrally. Altogether, embryoids provide an in vitro model of mammalian embryo that displays extensive development of germ layer derivatives and that promises to be a powerful tool for in vitro studies and disease modelling.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qingsong Sun ◽  
Man Luo ◽  
Zhiwei Gao ◽  
Xiang Han ◽  
Weiqin Wu ◽  
...  

Abstract Background Acute lung injury (ALI) is a pulmonary disorder that leads to acute respiration failure and thereby results in a high mortality worldwide. Increasing studies have indicated that toll-like receptor 4 (TLR4) is a promoter in ALI, and we aimed to explore the underlying upstream mechanism of TLR4 in ALI. Methods We used lipopolysaccharide (LPS) to induce an acute inflammatory response in vitro model and a murine mouse model. A wide range of experiments including reverse transcription quantitative polymerase chain reaction, western blot, enzyme linked immunosorbent assay, flow cytometry, hematoxylin–eosin staining, RNA immunoprecipitation, luciferase activity and caspase-3 activity detection assays were conducted to figure out the expression status, specific role and potential upstream mechanism of TLR4 in ALI. Result TLR4 expression was upregulated in ALI mice and LPS-treated primary bronchial/tracheal epithelial cells. Moreover, miR-26a-5p was confirmed to target TLR4 according to results of luciferase reporter assay. In addition, miR-26a-5p overexpression decreased the contents of proinflammatory factors and inhibited cell apoptosis, while upregulation of TLR4 reversed these effects of miR-26a-5p mimics, implying that miR-26a-5p alleviated ALI by regulating TLR4. Afterwards, OPA interacting protein 5 antisense RNA 1 (OIP5-AS1) was identified to bind with miR-26a-5p. Functionally, OIP5-AS1 upregulation promoted the inflammation and miR-26a-5p overexpression counteracted the influence of OIP5-AS1 upregulation on cell inflammatory response and apoptosis. Conclusion OIP5-AS1 promotes ALI by regulating the miR-26a-5p/TLR4 axis in ALI mice and LPS-treated cells, which indicates a promising insight into diagnostics and therapeutics in ALI.


Sign in / Sign up

Export Citation Format

Share Document