Shifts in type I fiber proportion in rat hindlimb muscle are accompanied by changes in HSP72 content

1994 ◽  
Vol 266 (5) ◽  
pp. C1240-C1246 ◽  
Author(s):  
M. Locke ◽  
B. G. Atkinson ◽  
R. M. Tanguay ◽  
E. G. Noble

Heat-shock protein 72 (HSP72), the inducible isoform of the HSP70 family, is constitutively expressed in rat hindlimb muscles in proportion to the content of type I muscle fibers. To determine whether this relationship was maintained after fiber transformation, male Sprague-Dawley rats were treated with 3,5,3'-triiodo-DL-thyronine (T3) for 40 days or underwent surgical removal of the left gastrocnemius muscle, after which the left plantaris muscle was allowed to hypertrophy for 30 days. Hypertrophied plantaris muscles exhibited an increased number of type I fibers, type I myosin heavy-chain (MHC) protein, and HSP72 content compared with contralateral muscles. Soleus muscles from rats administered T3 exhibited an increased number of type II fibers, citrate synthase activity, and decreased HSP72 content compared with soleus muscles from controls. These results indicate that the relationship between HSP72 content and type I muscle fiber-MHC composition is maintained when muscles undergo fiber transformation and substantiate that HSP72 content in rat skeletal muscle is not directly linked to a muscle's oxidative capacity.

2002 ◽  
Vol 282 (3) ◽  
pp. E593-E600 ◽  
Author(s):  
Gregory R. Steinberg ◽  
Arend Bonen ◽  
David J. Dyck

Leptin acutely increases fatty acid (FA) oxidation and triacylglycerol (TG) hydrolysis and decreases TG esterification in oxidative rodent muscle. However, the effects of chronic leptin administration on FA metabolism in skeletal muscle have not been examined. We hypothesized that chronic leptin treatment would enhance TG hydrolysis as well as the capacity to oxidize FA in soleus (SOL) muscle. Female Sprague-Dawley rats were infused for 2 wk with leptin (LEPT; 0.5 mg · kg−1 · day−1) by use of subcutaneously implanted miniosmotic pumps. Control (AD-S) and pair-fed (PF-S) animals received saline-filled implants. Subsequently, FA metabolism was monitored for 45 min in isolated, resting, and contracting (20 tetani/min) SOL muscles by means of pulse-chase procedures. Food intake (−33 ± 2%, P < 0.01) and body mass (−12.5 ± 4%, P = 0.01) were reduced in both LEPT and PF-S animals. Leptin levels were elevated (+418 ± 7%, P < 0.001) in treated animals but reduced in PF-S animals (−73 ± 8%, P< 0.05) relative to controls. At rest, TG hydrolysis was increased in leptin-treated rats (1.8 ± 2.2, AD-S vs. 23.5 ± 8.1 nmol/g wet wt, LEPT; P < 0.001). In contracting SOL muscles, TG hydrolysis (1.5 ± 0.6, AD-S vs. 3.6 ± 1.0 μmol/g wet wt, LEPT; P = 0.02) and palmitate oxidation (18.3 ± 6.7, AD-S vs. 45.7 ± 9.9 nmol/g wet wt, LEPT; P < 0.05) were both significantly increased by leptin treatment. Chronic leptin treatment had no effect on TG esterification either at rest or during contraction. Markers of overall (citrate synthase) and FA (hydroxyacyl-CoA dehydrogenase) oxidative capacity were unchanged with leptin treatment. Protein expression of hormone-sensitive lipase (HSL) was also unaltered following leptin treatment. Thus leptin-induced increases in lipolysis are likely due to HSL activation (i.e., phosphorylation). Increased FA oxidation secondary to chronic leptin treatment is not due to an enhanced oxidative capacity and may be a result of enhanced flux into the mitochondrion (i.e., carnitine palmitoyltransferase I regulation) or electron transport uncoupling (i.e., uncoupling protein-3 expression).


1984 ◽  
Vol 246 (1) ◽  
pp. H59-H68 ◽  
Author(s):  
R. B. Armstrong ◽  
M. H. Laughlin

This study was designed to determine the influence of a long-term, moderate-intensity treadmill training program on the distribution of blood flow within and among muscles of rats during exercise. One group (T) of male Sprague-Dawley rats trained for 1 h/day for 13-17 wk at 30 m/min on a motor-driven treadmill. A second group (UT) of rats was conditioned for 10 min/day for 4 wk at the same speed. Muscle succinate dehydrogenase activities were higher in T than UT rats indicating a significant training effect. Blood flows (BFs) in 32 hindlimb muscles or muscle parts and other selected organs were measured in the two groups with radiolabeled microspheres during preexercise and while the rats ran for 30 s, 5 min, or 15 min at 30 m/min on the treadmill. The data indicate 1) there were no differences in total hindlimb muscle BF between UT and T rats at any time; however, 2) T rats had higher preexercise heart rates and higher muscle BFs in the deep red extensor muscles, suggesting a greater anticipatory response to the impending exercise; 3) T rats demonstrated more rapid elevations in BF in the red extensor muscles at the commencement of exercise; 4) T rats had higher BFs in red extensor muscles during exercise, whereas UT rats had higher BFs in white muscles; and 5) T rats maintained higher BFs in the visceral organs during exercise. These findings demonstrate that exercise training results in changes in the distribution of BF within and among muscles and among organs during exercise. Specifically, data indicate the high-oxidative motor units that are primarily recruited in the muscles during the initial stages of moderate treadmill exercise receive higher blood flows in the trained rats; this presumably contributes to increased resistance to fatigue.


2002 ◽  
Vol 50 (12) ◽  
pp. 1685-1692 ◽  
Author(s):  
John P. Mattson ◽  
Todd A. Miller ◽  
David C. Poole ◽  
Michael D. Delp

The hamster is a valuable biological model for physiological investigation. Despite the obvious importance of the integration of cardiorespiratory and muscular system function, little information is available regarding hamster muscle fiber type and oxidative capacity, both of which are key determinants of muscle function. The purpose of this investigation was to measure immunohistochemically the relative composition and size of muscle fibers composed of types I, IIA, IIX, and IIB fibers in hamster skeletal muscle. The oxidative capacity of each muscle was also assessed by measuring citrate synthase activity. Twenty-eight hindlimb, respiratory, and facial muscles or muscle parts from adult (144–147 g bw) male Syrian golden hamsters ( n=3) were dissected bilaterally, weighed, and frozen for immunohistochemical and biochemical analysis. Combining data from all 28 muscles analyzed, type I fibers made up 5% of the muscle mass, type IIA fibers 16%, type IIX fibers 39%, and type IIB fibers 40%. Mean fiber cross-sectional area across muscles was 1665 ± 328 μm2 for type I fibers, 1900 ± 417 μm2 for type IIA fibers, 3230 ± 784 μm2 for type IIX fibers, and 4171 ± 864 μm2 for type IIB fibers. Citrate synthase activity was most closely related to the population of type IIA fibers ( r=0.68, p<0.0001) and was in the rank order of type IIA > I > IIX > IIB. These data demonstrate that hamster skeletal muscle is predominantly composed of type IIB and IIX fibers.


1990 ◽  
Vol 69 (1) ◽  
pp. 58-66 ◽  
Author(s):  
D. A. Riley ◽  
G. R. Slocum ◽  
J. L. Bain ◽  
F. R. Sedlak ◽  
T. E. Sowa ◽  
...  

Soleus muscle atrophy was induced by hindlimb unloading of male Sprague-Dawley rats (305 +/- 15 g) for 4, 7, and 10-14 days. Controls (291 +/- 14 g) were housed in vivarium cages. Soleus electromyogram (EMG) activity was recorded before and during tail suspension. Unloading caused progressive reduction in the muscle-to-body weight ratio. After 14 days, type I and IIa fibers decreased in area 63 and 47%, respectively. Subsarcolemmal mitochondria and myofibrils were degraded more rapidly than intermyofibrillar mitochondria and the cell membrane. After 10 days, 3% of the fibers exhibited segmental necrosis; affected fibers were all high-oxidative type IIa fibers. This suggested ischemic injury. By 13 days, 30% of the fibers possessed central corelike lesions involving primarily type I fibers. Video monitoring revealed abnormal plantar flexion of the hindfeet by 4 days; this posture shortened the soleus working range. Corelike lesions indicated adaptation to the shortened length. No morphological signs of denervation were detected. EMG activity shifted from tonic to phasic, and aggregate activity was 13% of normal after 7 days. These findings indicate that the atrophy and pathological changes result from unloaded contractions, reduced use, compromised blood flow, and shortened working length.


1991 ◽  
Vol 261 (6) ◽  
pp. C1099-C1106 ◽  
Author(s):  
G. M. Diffee ◽  
F. Haddad ◽  
R. E. Herrick ◽  
K. M. Baldwin

The aim of this study was to contrast competing influences, hypothyroidism and hindlimb suspension, on myosin heavy chain (MHC) expression studied at the protein level and mRNA level. Female Sprague-Dawley rats were assigned to either normal control (NC), normal suspended (NS), or hypothyroid (thyroidectomized) control (TC) and suspended (TS) groups. NS and TS animals were suspended for 14 days following which myofibrils and total RNA were purified from the hindlimb muscles. In the soleus and vastus intermedius (VI), there was an increase in type I MHC and a decrease in type IIa MHC in both the TC and TS groups and a decrease in type I and increase in type IIa MHC in the NS group. At the mRNA level, similar shifts were observed with the exception that 1) the increased type IIa MHC seen in the soleus and VI of the NS animals was not accompanied by an increase in IIa mRNA and 2) type IIb mRNA was increased in the NS soleus without concomitant changes in IIb protein levels. These data suggest the following: 1) a hypothyroid state predominates over mechanical unweighting factors in the control of MHC distribution in slow muscles; and 2) translational or posttranslational factors may be important in the regulation of type IIa and IIb MHC expression during hindlimb suspension.


2006 ◽  
Vol 100 (3) ◽  
pp. 981-987 ◽  
Author(s):  
David E. T. O'Neill ◽  
F. Kris Aubrey ◽  
David A. Zeldin ◽  
Robin N. Michel ◽  
Earl G. Noble

Heat shock protein 72 (Hsp70) is constitutively expressed in rat hindlimb muscles, reportedly in proportion to their content of type I myosin heavy chain. This distribution pattern has been suggested to result from the higher recruitment and activity of such muscles and/or a specific relationship between myosin phenotype and Hsp70 content. To differentiate between these possibilities, the fiber-specific distribution of Hsp70 was examined in male Sprague-Dawley rat plantaris under control conditions, following a fast-to-slow phenotypic shift in response to surgically induced overload (O) and in response to O when the phenotypic shift was prevented by 3,5,3′-triiodo-dl-thyronine administration. Constitutive expression of Hsp70 was restricted to type I and IIa fibers in plantaris from control rats, and this fiber-specific pattern of expression was maintained following O of up to 28 days, although Hsp70 content in the O muscle doubled. When O (for 40 days) of the plantaris was combined with 3,5,3′-triiodo-dl-thyronine administration, despite typical hypertrophy in the overloaded plantaris, prevention of the normal phenotypic transformation also blocked the increased expression of Hsp70 observed in euthyroid controls. Collectively, these data suggest that chronic changes in constitutive expression of Hsp70 with altered contractile activity appear critically dependent on fast-to-slow phenotypic remodeling.


1993 ◽  
Vol 75 (6) ◽  
pp. 2718-2726 ◽  
Author(s):  
C. R. Woodman ◽  
C. M. Tipton ◽  
J. Evans ◽  
J. K. Linderman ◽  
K. Gosselink ◽  
...  

Rats exposed to head-down suspension (HDS) exhibit reductions in maximal O2 consumption (VO2max) and atrophy of select hindlimb muscles. This study tested the hypothesis that an endocrine-deficient rat exposed to HDS would not exhibit reductions in VO2max or hindlimb muscle mass. Hypophysectomized (HYPX) and sham-operated (SHAM) rats were tested for VO2max before and after 28 days of HDS or cage control (CC) conditions. No significant reductions in VO2max were observed in HYPX rats. In contrast, SHAM-HDS rats exhibited a significant reduction in absolute (-16%) and relative (-29%) measures of aerobic capacity. Time course experiments revealed a reduction in VO2max in SHAM-HDS rats within 7 days, suggesting that cardiovascular adjustments to HDS occurred in the 1st wk. HDS was associated with atrophy of the soleus (-42%) in SHAM rats, whereas HYPX rats exhibited atrophy of the soleus (-36%) and plantaris (-13%). SHAM-HDS rats had significantly lower (-38%) soleus citrate synthase activities per gram muscle mass than SHAM-CC, but no significant differences existed between HYPX-HDS and -CC rats. HDS rats had an impaired ability to thermoregulate, as indicated by significantly greater temperature increases per unit run time, compared with their CC counterparts. Pretreatment plasma epinephrine levels were significantly lower in HYPX than in SHAM rats. Norepinephrine concentration was similar for all groups except HYPX-HDS, in which it was significantly higher. HDS had no significant effect on thyroxine or triiodothyronine. SHAM-HDS rats had significantly lower concentrations of testosterone and growth hormone.(ABSTRACT TRUNCATED AT 250 WORDS)


1999 ◽  
Vol 86 (5) ◽  
pp. 1696-1701 ◽  
Author(s):  
Earl G. Noble ◽  
Albert Moraska ◽  
Robert S. Mazzeo ◽  
David A. Roth ◽  
M. Charlotte Olsson ◽  
...  

High-intensity treadmill exercise increases the expression of a cardioprotective, inducible 72-kDa stress protein (SP72) in cardiac muscle. This investigation examined whether voluntary free wheel exercise training would be sufficient to confer a similar response. Male Sprague-Dawley rats were randomly assigned to either treadmill (TM-Tr) or free wheel (FW-Tr) training groups. By the end of the 8-wk training period, TM-Tr animals ran 1 h/day, 5 days/wk up a 10% grade, covering a distance of 8,282 m/wk. FW-Tr rats ran, on average, 5,300 m/wk, with one-third of the animals covering distances similar to those for the TM-Tr group. At the time of death, hearts of trained and caged sedentary control (Sed) animals were divided into left (LV) and right (RV) ventricles. Citrate synthase activity and the relative immunoblot contents of SP72, SP73 (the constitutive isoform of the SP70 family), and a 75-kDa mitochondrial chaperone (SP75) were subsequently determined. LV and RV did not differ on any measure, and SP73, SP75, and citrate synthase were not affected by training. Cardiac SP72 levels were elevated over fourfold in both ventricles of TM-Tr compared with RV of FW-Sed rats. Despite the animals having run a similar total distance, cardiac SP72 content in FW-Tr rats was not different from that in Sed animals. These data indicate that voluntary exercise training is insufficient to elicit an elevation of SP72 in rat heart and suggest that exercise intensity may be a critical factor in evoking the cardioprotective SP72 response.


1993 ◽  
Vol 75 (1) ◽  
pp. 264-267 ◽  
Author(s):  
T. J. Walters ◽  
S. H. Constable

We examined the effect of long-term intermittent cold exposure on the fiber type composition of the predominantly type I soleus and the predominantly type IIb extensor digitorum longus (EDL) muscles of rats. Cold exposure was accomplished by submerging the rats in shoulder-deep water, maintained at 20 +/- 0.5 degrees C, for 1 h/day, 5 days/wk, for < or = 19 wk. The efficacy of the treatment was tested by subjecting both groups to 20 degrees C water for 45 min while rectal temperature (Tre) and O2 consumption (VO2) were measured. The cold-exposed group displayed a 22% smaller reduction in Tre (P < 0.05) at the end of the exposure and 23% greater VO2 (P < 0.05) during the same period. Fiber type composition was determined using routine histochemical methods for myosin-adenosinetriphosphatase. In the soleus muscle of the cold-exposed rats, the number of type IIa fibers increased 156% (P < 0.05) and the number of type I fibers decreased 24% (P < 0.05). Cold exposure had no significant influence on the fiber type composition of the EDL muscle. Cold exposure resulted in an increase in citrate synthase activity of 20 and 22% in the soleus and EDL muscles, respectively (P < 0.05). The present study demonstrates that intermittent cold exposure induces a type I-to-type IIa transformation in the soleus muscle while having no influence on the EDL muscle.


2017 ◽  
Vol 312 (4) ◽  
pp. R520-R528 ◽  
Author(s):  
Naoki Horii ◽  
Natsuki Hasegawa ◽  
Shumpei Fujie ◽  
Masataka Uchida ◽  
Eri Miyamoto-Mikami ◽  
...  

The purpose of this study was to investigate the effect of chronic chlorella intake alone or in combination with high-intensity intermittent exercise (HIIE) training on exercise performance and muscle glycolytic and oxidative metabolism in rats. Forty male Sprague-Dawley rats were randomly assigned to the four groups: sedentary control, chlorella intake (0.5% chlorella powder in normal feed), HIIE training, and combination of HIIE training and chlorella intake for 6 wk ( n = 10 each group). HIIE training comprised 14 repeats of a 20-s swimming session with a 10-s pause between sessions, while bearing a weight equivalent to 16% of body weight, 4 days/week. Exercise performance was tested after the interventions by measuring the maximal number of HIIE sessions that could be completed. Chlorella intake and HIIE training significantly increased the maximal number of HIIE sessions and enhanced the expression of monocarboxylate transporter (MCT)1, MCT4, and peroxisome proliferator-activated receptor γ coactivator-1α concomitantly with the activities of lactate dehydrogenase (LDH), phosphofructokinase, citrate synthase (CS), and cytochrome- c oxidase (COX) in the red region of the gastrocnemius muscle. Furthermore, the combination further augmented the increased exercise performance and the enhanced expressions and activities. By contrast, in the white region of the muscle, MCT1 expression and LDH, CS, and COX activities did not change. These results showed that compared with only chlorella intake and only HIIE training, chlorella intake combined with HIIE training has a more pronounced effect on exercise performance and muscle glycolytic and oxidative metabolism, in particular, lactate metabolism.


Sign in / Sign up

Export Citation Format

Share Document