Role of the matrixin MMP-2 in multicellular organization of adipocytes cultured in basement membrane components

1997 ◽  
Vol 272 (3) ◽  
pp. C937-C949 ◽  
Author(s):  
L. M. Brown ◽  
H. L. Fox ◽  
S. A. Hazen ◽  
K. F. LaNoue ◽  
S. R. Rannels ◽  
...  

Primary rat adipocytes cultured in basement membrane component gels migrated and organized into large, three-dimensional, multicellular clusters. Gross morphological changes seen during this reorganization are described. The rate of cluster formation decreased with age of the rats and was stimulated by insulin in older, but not in younger rats. Echistatin, a disintegrin, partially inhibited the formation of multicellular clusters in a concentration-dependent fashion (50% inhibitory concentration approximately 10 nM). The original extracellular matrix was initially remodeled and eventually destroyed by the time large multicellular clusters were observed. This implied that one or more matrix-degrading protease(s) were being secreted. Adipocyte-conditioned medium was found to contain a divalent cation-sensitive gelatinase activity at approximately 72 and/or approximately 62 kDa. The elution profile of this activity from gelatin-Sepharose 4B was similar to matrix metalloproteinase 2 (MMP-2, a 72-kDa matrixin with a 62-kDa mature form), and the dimethyl sulfoxide eluant from these columns contained MMP-2 immunoreactivity. MMP-2 concentration and activity were greater in conditioned medium from young than from older animals; however, insulin did not affect the amount of MMP-2 in adipocyte-conditioned media. The matrixin inhibitor 1,10-phenanthroline not only blocked gelatinase activity in zymograms but also prevented extracellular matrix remodeling and destruction, as well as adipocyte migration and the formation of cell-cell contacts in adipocyte cultures. These observations are consistent with the hypothesis that the matrixin MMP-2 is secreted by adipocytes. Whereas matrixin activity alone may not be sufficient for the formation of multicellular clusters, the data indicate that it may have a requisite role in this process.

2015 ◽  
Vol 308 (11) ◽  
pp. H1391-H1401 ◽  
Author(s):  
Santhosh K. Mani ◽  
Christine B. Kern ◽  
Denise Kimbrough ◽  
Benjamin Addy ◽  
Harinath Kasiganesan ◽  
...  

Left ventricular (LV) remodeling, after myocardial infarction (MI), can result in LV dilation and LV pump dysfunction. Post-MI induction of matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9, have been implicated as causing deleterious effects on LV and extracellular matrix remodeling in the MI region and within the initially unaffected remote zone. Histone deacetylases (HDACs) are a class of enzymes that affect the transcriptional regulation of genes during pathological conditions. We assessed the efficacy of both class I/IIb- and class I-selective HDAC inhibitors on MMP-2 and MMP-9 abundance and determined if treatment resulted in the attenuation of adverse LV and extracellular matrix remodeling and improved LV pump function post-MI. MI was surgically induced in MMP-9 promoter reporter mice and randomized for treatment with a class I/IIb HDAC inhibitor for 7 days post-MI. After MI, LV dilation, LV pump dysfunction, and activation of the MMP-9 gene promoter were significantly attenuated in mice treated with either the class I/IIb HDAC inhibitor tichostatin A or suberanilohydroxamic acid (voronistat) compared with MI-only mice. Immunohistological staining and zymographic levels of MMP-2 and MMP-9 were reduced with either tichostatin A or suberanilohydroxamic acid treatment. Class I HDAC activity was dramatically increased post-MI. Treatment with the selective class I HDAC inhibitor PD-106 reduced post-MI levels of both MMP-2 and MMP-9 and attenuated LV dilation and LV pump dysfunction post-MI, similar to class I/IIb HDAC inhibition. Taken together, these unique findings demonstrate that selective inhibition of class I HDACs may provide a novel therapeutic means to attenuate adverse LV remodeling post-MI.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Cheri L. Lamb ◽  
Giovan N. Cholico ◽  
Daniel E. Perkins ◽  
Michael T. Fewkes ◽  
Julia Thom Oxford ◽  
...  

The aryl hydrocarbon receptor (AhR) is a soluble, ligand-activated transcription factor that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Increasing evidence implicates the AhR in regulating extracellular matrix (ECM) homeostasis. We recently reported that TCDD increased necroinflammation and myofibroblast activation during liver injury elicited by carbon tetrachloride (CCl4). However, TCDD did not increase collagen deposition or exacerbate fibrosis in CCl4-treated mice, which raises the possibility that TCDD may enhance ECM turnover. The goal of this study was to determine how TCDD impacts ECM remodeling gene expression in the liver. Male C57BL/6 mice were treated for 8 weeks with 0.5 mL/kg CCl4, and TCDD (20 μg/kg) was administered during the last two weeks. Results indicate that TCDD increased mRNA levels of procollagen types I, III, IV, and VI and the collagen processing molecules HSP47 and lysyl oxidase. TCDD also increased gelatinase activity and mRNA levels of matrix metalloproteinase- (MMP-) 3, MMP-8, MMP-9, and MMP-13. Furthermore, TCDD modulated expression of genes in the plasminogen activator/plasmin system, which regulates MMP activation, and it also increased TIMP1 gene expression. These findings support the notion that AhR activation by TCDD dysregulates ECM remodeling gene expression and may facilitate ECM metabolism despite increased liver injury.


Blood ◽  
2010 ◽  
Vol 116 (19) ◽  
pp. 4025-4033 ◽  
Author(s):  
Raquel del Toro ◽  
Claudia Prahst ◽  
Thomas Mathivet ◽  
Geraldine Siegfried ◽  
Joshua S. Kaminker ◽  
...  

Abstract Sprouting of developing blood vessels is mediated by specialized motile endothelial cells localized at the tips of growing capillaries. Following behind the tip cells, endothelial stalk cells form the capillary lumen and proliferate. Expression of the Notch ligand Delta-like-4 (Dll4) in tip cells suppresses tip cell fate in neighboring stalk cells via Notch signaling. In DLL4+/− mouse mutants, most retinal endothelial cells display morphologic features of tip cells. We hypothesized that these mouse mutants could be used to isolate tip cells and so to determine their genetic repertoire. Using transcriptome analysis of retinal endothelial cells isolated from DLL4+/− and wild-type mice, we identified 3 clusters of tip cell–enriched genes, encoding extracellular matrix degrading enzymes, basement membrane components, and secreted molecules. Secreted molecules endothelial-specific molecule 1, angiopoietin 2, and apelin bind to cognate receptors on endothelial stalk cells. Knockout mice and zebrafish morpholino knockdown of apelin showed delayed angiogenesis and reduced proliferation of stalk cells expressing the apelin receptor APJ. Thus, tip cells may regulate angiogenesis via matrix remodeling, production of basement membrane, and release of secreted molecules, some of which regulate stalk cell behavior.


2007 ◽  
Vol 70 (2) ◽  
pp. 162-170 ◽  
Author(s):  
Ana-Maria Pena ◽  
Aurélie Fabre ◽  
Delphine Débarre ◽  
Joëlle Marchal-Somme ◽  
Bruno Crestani ◽  
...  

1996 ◽  
Vol 270 (1) ◽  
pp. L3-L27 ◽  
Author(s):  
S. E. Dunsmore ◽  
D. E. Rannels

The lung and other organs are comprised of both cellular and extracellular compartments. Interaction of these components modulates physiological function at the organ, cellular, and subcellular levels. Extracellular components in the gas-exchange region of the lung include both noncellular interstitium and basement membranes. Connective tissue elements of the interstitium in part determine ventilatory function by contributions to tissue compliance and to resistance of the diffusion barrier. The basement membrane underlies cells of both the alveolar epithelium and the capillary endothelium; basement membrane components exert biological effects on adjacent cells through receptor-mediated interactions. This review emphasizes current knowledge concerning the composition and biological activity of extracellular matrix in the alveolar region of the lung. Matrix synthesis and turnover are also considered. Directions for future research are suggested in the context of current knowledge of the lung and other model systems.


2017 ◽  
Vol 122 (2) ◽  
pp. 361-367 ◽  
Author(s):  
Broc D. Astill ◽  
Mark S. Katsma ◽  
David J. Cauthon ◽  
Jason Greenlee ◽  
Mark Murphy ◽  
...  

Several recent investigations have demonstrated that the ability of various tendons to alter structural and functional properties in response to exercise are muted in women compared with men. We hypothesize that this disparity between men and women may be due to a reduced tendon production of key mediators of tendon extracellular matrix (ECM) remodeling in response to mechanical loading, e.g., exercise. Using microdialysis before and after an acute bout of resistance exercise, we evaluated Achilles peritendinous levels of insulin-like growth factor-1 (IGF-1) and interleukin-6 (IL-6), which have both been shown to increase tendon collagen synthesis. Additionally, the matrix remodeling enzymes matrix metalloproteinase-2 (MMP-2), MMP-9, and tissue inhibitor of metalloproteinase-1 (TIMP-1) were also evaluated. IGF-1 levels were elevated ( P < 0.05) to a similar extent in men and women after 3 h of exercise but remained elevated at 4 h in only women. IL-6 levels were ~4-fold greater after exercise in both men and women ( P < 0.05). MMP-2 levels increased to a similar extent (~2-3-fold) in men and women ( P < 0.05). In contrast, MMP-9 increased with exercise but only in men ( P < 0.05). Last, TIMP-1 levels also increased ( P < 0.05) with exercise in men and women but the increase was more prolonged in women. In conclusion, we observed modest sex differences in tendon release of MMP-9, TIMP-1, and IGF-1 after acute resistance exercise. If such differences persist throughout a chronic exercise training, they may contribute to the reduced ability of women to adapt to exercise compared with men. NEW & NOTEWORTHY In this investigation we utilized microdialysis of the peritendinous Achilles to evaluate potential differences between men and women in tendon production of key regulators of extracellular matrix remodeling. We demonstrate that a modest sex-specific difference exists in peritendinous levels of several key extracellular matrix modulators after an acute bout of resistance exercise.


1995 ◽  
Vol 268 (4) ◽  
pp. H1613-H1620
Author(s):  
C. J. de Groot ◽  
V. A. Chao ◽  
J. M. Roberts ◽  
R. N. Taylor

Human umbilical vein endothelial (HUVE) cells plated on plastic or gelatin-coated dishes grow as a “cobblestone” monolayer. By contrast, endothelial cells cultured on a complex matrix (e.g., Matrigel) form three-dimensional, capillary-like structures. In the current study, we verified the capillary phenotype of the latter structures and asked whether the morphological changes induced by extracellular matrix also affect human endothelial gene expression and function in vitro. Concentrations of cellular fibronectin, prostacyclin, and endothelin-1 were measured in the conditioned media by enzyme-linked immunosorbent and radioimmunoassays. Steady-state concentrations of HUVE mRNA were estimated by reverse transcription-polymerase chain reaction and quantified by Northern analyses to assess fibronectin and endothelin-1 gene expression. We found that the subjacent extracellular matrix affects the morphology, proliferation, and differentiation of HUVE cells in vitro. Cells cultured on gelatin were more mitotically active, expressed significantly less cellular fibronectin, made similar amounts of prostacyclin, and secreted significantly more endothelin-1 compared with the same cells grown on a Matrigel substrate.


Sign in / Sign up

Export Citation Format

Share Document