scholarly journals Aquaporins in complex tissues. II. Subcellular distribution in respiratory and glandular tissues of rat

1997 ◽  
Vol 273 (5) ◽  
pp. C1549-C1561 ◽  
Author(s):  
Søren Nielsen ◽  
Landon S. King ◽  
Birgitte Mønster Christensen ◽  
Peter Agre

The molecular pathways for fluid transport in pulmonary, oral, and nasal tissues are still unresolved. Here we use immunocytochemistry and immunoelectron microscopy to define the sites of expression of four aquaporins in the respiratory tract and glandular epithelia, where they reside in distinct, nonoverlapping sites. Aquaporin-1 (AQP1) is present in apical and basolateral membranes of bronchial, tracheal, and nasopharyngeal vascular endothelium and fibroblasts. AQP5 is localized to the apical plasma membrane of type I pneumocytes and the apical plasma membranes of secretory epithelium in upper airway and salivary glands. In contrast, AQP3 is present in basal cells of tracheal and nasopharyngeal epithelium and is abundant in basolateral membranes of surface epithelial cells of nasal conchus. AQP4 resides in basolateral membranes of columnar cells of bronchial, tracheal, and nasopharyngeal epithelium; in nasal conchus AQP4 is restricted to basolateral membranes of a subset of intra- and subepithelial glands. These sites of expression suggest that transalveolar water movement, modulation of airway surface liquid, air humidification, and generation of nasopharyngeal secretions involve a coordinated network of aquaporin water channels.

2001 ◽  
Vol 117 (6) ◽  
pp. 573-582 ◽  
Author(s):  
Yuanlin Song ◽  
Sujatha Jayaraman ◽  
Baoxue Yang ◽  
Michael A. Matthay ◽  
A.S. Verkman

Several aquaporin-type water channels are expressed in mammalian airways and lung: AQP1 in microvascular endothelia, AQP3 in upper airway epithelia, AQP4 in upper and lower airway epithelia, and AQP5 in alveolar epithelia. Novel quantitative methods were developed to compare airway fluid transport–related functions in wild-type mice and knockout mice deficient in these aquaporins. Lower airway humidification, measured from the moisture content of expired air during mechanical ventilation with dry air through a tracheotomy, was 54–56% efficient in wild-type mice, and reduced by only 3–4% in AQP1/AQP5 or AQP3/AQP4 double knockout mice. Upper airway humidification, measured from the moisture gained by dry air passed through the upper airways in mice breathing through a tracheotomy, decreased from 91 to 50% with increasing ventilation from 20 to 220 ml/min, and reduced by 3–5% in AQP3/AQP4 knockout mice. The depth and salt concentration of the airway surface liquid in trachea was measured in vivo using fluorescent probes and confocal and ratio imaging microscopy. Airway surface liquid depth was 45 ± 5 μm and [Na+] was 115 ± 4 mM in wild-type mice, and not significantly different in AQP3/AQP4 knockout mice. Osmotic water permeability in upper airways, measured by an in vivo instillation/sample method, was reduced by ∼40% by AQP3/AQP4 deletion. In doing these measurements, we discovered a novel amiloride-sensitive isosmolar fluid absorption process in upper airways (13% in 5 min) that was not affected by aquaporin deletion. These results establish the fluid transporting properties of mouse airways, and indicate that aquaporins play at most a minor role in airway humidification, ASL hydration, and isosmolar fluid absorption.


1992 ◽  
Vol 140 (6) ◽  
pp. 691-698 ◽  
Author(s):  
M.J. Terry ◽  
J.L. Hall ◽  
B. Thomas
Keyword(s):  
Type I ◽  

1996 ◽  
Vol 109 (7) ◽  
pp. 1875-1889 ◽  
Author(s):  
A. Zuk ◽  
K.S. Matlin

A number of epithelia form tubulocysts in vitro when overlaid with type I collagen gel. Because collagen receptors are generally believed to be expressed on the basolateral domain, the mechanism by which collagen elicits this morphogenetic response from the apical surface is unclear. To investigate the role of beta 1 integrins, the major receptor family for collagen, in this process, we overlaid polarized monolayers of MDCK II cells grown on permeable supports with type I collagen gel and correlated integrin polarity with the polarity of other apical and basolateral membrane markers during tubulocyst formation. Polarized monolayers of one clone of MDCK II cells, referred to as Heidelberg MDCK, initially respond to collagen overlay by stratifying; within 48 hours, lumena develop between the cell layers giving rise to tubulocysts. Tight junctions remain intact during tubulocyst formation because transepithelial electrical resistance does not significantly change. Major alterations are observed, however, in the expression and localization of apical and basolateral membrane markers. beta 1 integrins are necessary for tubulocyst morphogenesis because a function-blocking antibody administered to the apical pole of the cells completely inhibits the formation of these structures. To determine how apical-cell collagen interactions elicit tubulocyst formation, we examined whether beta 1 integrins are mobilized to apical plasma membranes in response to collagen overlay. We found that in the absence of collagen, polarized monolayers of Heidelberg MDCK cells endogenously express on apical plasma membranes a small pool of the beta 1 family, including alpha 2 beta 1 and alpha 3 beta 1. Collagen overlay does not mobilize additional beta 1 integrins to apical domains. If beta 1 integrins are not already apically expressed, as in the C6 MDCK cell line (Schoenenberger et al. (1994) J. Cell Biol. 107, 527–541), beta 1 integrins are not directed apically and tubulocysts do not develop in response to collagen. Thus, interaction of beta 1 integrin pre-existing on apical plasma membranes of polarized epithelia with type I collagen gel is the mechanism by which apical application of collagen elicits the formation of tubulocysts. Depolarized integrins on apical plasma membranes of polarized epithelia may be relevant to the pathogenesis of disease and injury.


1996 ◽  
Vol 80 (2) ◽  
pp. 699-705 ◽  
Author(s):  
T. Tsakiridis ◽  
P. P. Wong ◽  
Z. Liu ◽  
C. D. Rodgers ◽  
M. Vranic ◽  
...  

Muscle fibers adapt to ionic challenges of exercise by increasing the plasma membrane Na+-K+ pump activity. Chronic exercise training has been shown to increase the total amount of Na+-K+ pumps present in skeletal muscle. However, the mechanism of adaptation of the Na+-K+ pump to an acute bout of exercise has not been determined, and it is not known whether it involves alterations in the content of plasma membrane pump subunits. Here we examine the effect of 1 h of treadmill running (20 m/min, 10% grade) on the subcellular distribution and expression of Na+-K+ pump subunits in rat skeletal muscles. Red type I and IIa (red-I/IIa) and white type IIa and IIb (white-IIa/IIb) hindlimb muscles from resting and exercised female Sprague-Dawley rats were removed for subcellular fractionation. By homogenization and gradient centrifugation, crude membranes and purified plasma membranes were isolated and subjected to gel electrophoresis and immunoblotting by using pump subunit-specific antibodies. Furthermore, mRNA was isolated from specific red type I (red-I) and white type IIb (white-IIb) muscles and subjected to Northern blotting by using subunit-specific probes. In both red-I/IIa and white-IIa/IIb muscles, exercise significantly raised the plasma membrane content of the alpha1-subunit of the pump by 64 +/- 24 and 55 +/- 22%, respectively (P < 0.05), and elevated the alpha2-polypeptide by 43 +/- 22 and 94 +/- 39%, respectively (P < 0.05). No significant effect of exercise could be detected on the amount of these subunits in an internal membrane fraction or in total membranes. In addition, exercise significantly increased the alpha1-subunit mRNA in red-I muscle (by 50 +/- 7%; P < 0.05) and the beta2-subunit mRNA in white-IIb muscles (by 64 +/- 19%; P < 0.01), but the alpha2- and beta1-mRNA levels were unaffected in this time period. We conclude that increased presence of alpha1- and alpha2-polypeptides at the plasma membrane and subsequent elevation of the alpha1- and beta2-subunit mRNAs may be mechanisms by which acute exercise regulates the Na+-K+ pump of skeletal muscle.


1982 ◽  
Vol 242 (3) ◽  
pp. F246-F253 ◽  
Author(s):  
C. Le Grimellec ◽  
M. C. Giocondi ◽  
B. Carriere ◽  
S. Carriere ◽  
J. Cardinal

The physical state of membrane lipids and relationships with the activity of Na+-K+-ATPase and alkaline phosphatase were studied in basolateral and brush border membranes of the dog kidney. Fluorescence polarization and electron spin resonance experiments demonstrate that basolateral membranes are much more fluid than brush border membranes. This can be accounted for by a difference in fluidity of the lipid part of the membranes. Broad (43-17 degrees C) thermotropic transitions are observed in liposomes made from total lipid extracts of brush border and basolateral membranes. Fluorescence data strongly suggest that thermotropic transitions also occur in intact membranes and that a change in membrane physical state may take place around the physiological temperature. A nonlinear Arrhenius plot for the Na+-K+-ATPase activity in basolateral membranes (breakpoint 21 degrees C) provides additional support for the existence of a lipid liquid leads to gel transition in antiluminal plasma membranes. A break in the Arrhenius plot of alkaline phosphatase activity is also observed but at a temperature significantly higher (26 degrees C) than that of the end of the thermotropic transition. "Room temperature" appears as a critical zone for lipid physical state and activities of both enzymes.


Development ◽  
1988 ◽  
Vol 102 (3) ◽  
pp. 605-622 ◽  
Author(s):  
G. Greenburg ◽  
E.D. Hay

In considering the mechanism of transformation of epithelium to mesenchyme in the embryo, it is generally assumed that the ability to give rise to fibroblast-like cells is lost as epithelia mature. We reported previously that a definitive embryonic epithelium, that of the anterior lens, gives rise to freely migrating mesenchyme-like cells when suspended in type I collagen matrices. Here, we show that a highly differentiated epithelium that expresses cytokeratin changes to a vimentin cytoskeleton and loses thyroglobulin during epithelial-mesenchymal transformation induced by suspension in collagen gel. Using dispase and collagenase, we isolated adult thyroid follicles devoid of basal lamina and mesenchyme, and we suspended the follicles in 3D collagen gels. Cells bordering the follicle lumen retain epithelial polarity and thyroid phenotype, but basal cell surface organization is soon modified as a result of tissue multilayering and elongation of basal cells into the collagenous matrix. Cytodifferentiation, determined by thyroglobulin immunoreactivity, is lost as the basal epithelial cells move into the matrix after 3–4 days in collagen. By TEM, it can be seen that the elongating cells acquire pseudopodia, filopodia and mesenchyme-like nuclei and RER. Immunofluorescence examination of intermediate filaments showed that freshly isolated follicles and follicles cultured on planar substrata react only with anticytokeratin. However, all of the mesenchyme-like cells express vimentin and they gradually lose cytokeratin. These results suggest that vimentin may be necessary for cell functions associated with migration within a 3D matrix. The mesenchymal cells do not revert to epithelium when grown on planar substrata and the transformation of epithelium to mesenchyme-like cells does not occur within basement membrane gels. The results are relevant to our understanding of the initiation of epithelial-mesenchymal transformation in the embryo and the genetic mechanisms controlling cell shape, polarity and cytoskeletal phenotype.


1990 ◽  
Vol 96 (2) ◽  
pp. 197-205
Author(s):  
M. Guo ◽  
K. Toda ◽  
F. Grinnell

The purpose of our studies was to learn more about the regulation of keratinocyte migration. Human keratinocytes freshly harvested from skin were relatively immotile cells, whereas keratinocytes harvested from cell culture migrated on type I collagen or fibronectin as measured in a phagokinesis assay. Development of migratory competence by keratinocytes varied depending on the culture substratum. Cells cultured on plastic were activated more quickly and to a greater extent than cells cultured on dermis. The effect of the culture substratum on migratory competence was reversible. That is, cells cultured on plastic showed reduced activity after subculture on dermis. Cells cultured on dermis showed increased activity after subculture on plastic. Freshly isolated as well as cultured keratinocytes contained beta 1 integrin subunits, but only cultured cells were able to organize the subunits into focal adhesions. These adhesion sites also contained vinculin. In epidermal explants, beta 1 integrin subunits were mostly in basal cells, often more prominent between lateral cell borders than at the epidermal-dermal interface. In keratinocytes that migrated out of skin explants, there appeared to be an increase in the intensity of beta 1 integrin subunit immunostaining, possibly because of the change in shape of migrating cells. Also, beta 1 integrin subunits were found around and beneath migrating keratinocytes. These results show that changes in the distribution of beta 1 integrin subunits accompany development of migratory competence.


1968 ◽  
Vol 3 (1) ◽  
pp. 17-32
Author(s):  
M. J. BERRIDGE ◽  
B. L. GUPTA

Adenosine triphosphatase (ATPase) activity in the rectal papillae of Calliphora has been studied by biochemical and histochemical techniques. The microsomal fraction contained a Mg2+-activated ATPase with a pH optimum of 8.0. The enzyme was not stimulated by the addition of Na+ plus K+ and was insensitive to ouabain. Histochemical studies using modifications of the Wachstein-Meisel method showed that at pH 7.2 this Mg2+-activated ATPase was specifically localized on the intracellular surface of the lateral plasma membranes. A similar though less intense reaction was obtained with adenosine diphosphate and inosine triphosphate, but not with guanosine triphosphate, uridine triphosphate or β-glycerophosphate as substrates. At an acid pH (6.6-6.8), very little reaction occurred on the lateral plasma membrane but some reaction product was present in mitochondria and nuclei. Very little enzyme activity was found in the flattened rectal epithelium. These results are discussed in relation to the available data on transport ATPases and on the structural basis of fluid transport by rectal papillae. It is proposed that the ATPase localized on the stacks of lateral plasma membrane may be involved with ion secretion into the intercellular spaces to create the osmotic gradient necessary to extract water from the lumen.


1991 ◽  
Vol 100 (1) ◽  
pp. 23-33 ◽  
Author(s):  
K.K. Svoboda

The intracellular distribution of endoplasmic reticulum (ER) and types I and II collagen mRNA was analyzed in whole-mount preparations of freshly isolated corneal epithelia using in situ hybridization combined with confocal laser scanning analysis. The ER stained with DiOC6 (3) was prominent in both the periderm and basal cells. The basal cell ER distribution was perinuclear in the center of the cells, but below the nucleus the ER occupied nearly all of the cytoplasm in a reticular pattern similar to that seen with TEM cross-sections. Initial single label in situ hybridization studies showed that both the periderm and basal cells were positive for both types I and II collagen mRNA. The collagen cDNA probes appeared perinuclear in the center of the basal cells, similar to the DiOC6(3) staining pattern. In double-labeling experiments, the two mRNAs that translate chains of type I collagen, alpha 1 and alpha 2, colocalized within the same cell. However, the hybridization of probes specific for type I and II collagen mRNAs had separate, but overlapping, distributions within the same cell.


Sign in / Sign up

Export Citation Format

Share Document