Ca2+ activation of heart mitochondrial oxidative phosphorylation: role of the F0/F1-ATPase

2000 ◽  
Vol 278 (2) ◽  
pp. C423-C435 ◽  
Author(s):  
Paul R. Territo ◽  
Vamsi K. Mootha ◽  
Stephanie A. French ◽  
Robert S. Balaban

Ca2+ has been postulated as a cytosolic second messenger in the regulation of cardiac oxidative phosphorylation. This hypothesis draws support from the well-known effects of Ca2+ on muscle activity, which is stimulated in parallel with the Ca2+-sensitive dehydrogenases (CaDH). The effects of Ca2+ on oxidative phosphorylation were further investigated in isolated porcine heart mitochondria at the level of metabolic driving force (NADH or Δψ) and ATP production rates (flow). The resulting force-flow (F-F) relationships permitted the analysis of Ca2+ effects on several putative control points within oxidative phosphorylation, simultaneously. The F-F relationships resulting from additions of carbon substrates alone provided a model of pure CaDH activation. Comparing this curve with variable Ca2+ concentration ([Ca2+]) effects revealed an approximate twofold higher ATP production rate than could be explained by a simple increase in NADH or Δψ via CaDH activation. The half-maximal effect of Ca2+ at state 3 was 157 nM and was completely inhibited by ruthenium red (1 μM), indicating matrix dependence of the Ca2+ effect. Arsenate was used as a probe to differentiate between F0/F1-ATPase and adenylate translocase activity by a futile recycling of ADP-arsenate within the matrix, catalyzed by the F0/F1-ATPase. Ca2+increased the ADP arsenylation rate more than twofold, suggesting a direct effect on the F0/F1-ATPase. These results suggest that Ca2+ activates cardiac aerobic respiration at the level of both the CaDH and F0/F1-ATPase. This type of parallel control of both intermediary metabolism and ATP synthesis may provide a mechanism of altering ATP production rates with minimal changes in the high-energy intermediates as observed in vivo.

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Kimberly Ferrero ◽  
Jessica M Pfleger ◽  
Kurt Chuprun ◽  
Eric Barr ◽  
Erhe Gao ◽  
...  

The GPCR kinase GRK2 is highly expressed the heart; importantly, during cardiac injury or heart failure (HF) both levels and activity of GRK2 increase. The role of GRK2 during HF is canonically studied upstream of β-adrenergic desensitization. However, GRK2 has a large interactome and noncanonical functions for this kinase are being uncovered. We have discovered that in the heart, GRK2 translocates to mitochondria ( mtGRK2 ) following injury and is associated with negative effects on cardiac metabolism. Thus, we have sought to identify the mechanism(s) by which GRK2 can regulate mitochondrial function. We hypothesize that mtGRK2 interacts with proteins which regulate bioenergetics and substrate utilization, and this never-before-described role may partially explain the altered mitochondrial phenotype seen following cardiac injury or HF. Stress-induced mitochondrial translocation of GRK2 was validated in neonatal rat ventricular myocytes, murine heart tissue and a cardiac-derived cell line. Consequently, the GRK2 interactome was mapped basally and under stress conditions in vitro, in vivo , and with tagged recombinant peptides. GRK2-interacting proteins were isolated via immunoprecipitation and analyzed via liquid chromatography-mass spectroscopy (LCMS). Proteomics analysis (IPA; Qiagen) identified mtGRK2 interacting proteins which were also involved in mitochondrial dysfunction. Excitingly, Complexes I, II, IV and V (ATP synthase) of the electron transport chain (ETC) were identified in the subset of mtGRK2-dysfunction partners. Several mtGRK2-ETC interactions were increased following stress, particularly those in Complex V. We further established that mtGRK2 phosphorylates some of the subunits of Complex V, particularly the ATP synthase barrel which is critical for ATP production in the heart. Specific amino acid residues on these subunits have been identified using PTM-LCMS and are currently being validated in a murine model of myocardial infarction. To support these data, we have also determined that alterations in either the levels or kinase activity of GRK2 appear to alter the enzymatic activity of Complex V in vitro , thus altering ATP production. In summary, the phosphorylation of the ATP synthesis machinery by mtGRK2 may be regulating some of the phenotypic effects of injured or failing hearts such as increased ROS production and reduced fatty acid metabolism. Research is ongoing in our lab to elucidate the novel role of GRK2 in regulating mitochondrial bioenergetics and cell death, thus uncovering an exciting, druggable novel target for rescuing cardiac function in patients with injured and/or failing hearts.


1997 ◽  
Vol 83 (3) ◽  
pp. 867-874 ◽  
Author(s):  
T. W. Ryschon ◽  
M. D. Fowler ◽  
R. E. Wysong ◽  
A.-R. Anthony ◽  
R. S. Balaban

Ryschon, T. W., Fowler, R. E. Wysong, A.-R. Anthony, and R. S. Balaban. Efficiency of human skeletal muscle in vivo: comparison of isometric, concentric, and eccentric muscle action. J. Appl. Physiol. 83(3): 867–874, 1997.—The purpose of this study was to estimate the efficiency of ATP utilization for concentric, eccentric, and isometric muscle action in the human tibialis anterior and extensor digitorum longus in vivo. A dynamometer was used to quantitate muscle work, or tension, while simultaneous 31P-nuclear magnetic resonance data were collected to monitor ATP, phosphocreatine, inorganic phosphate, and pH. The relative efficiency of the actions was estimated in two ways: steady-state effects on high-energy phosphates and a direct comparison of ATP synthesis rates with work. In the steady state, the cytosolic free energy dropped to the lowest value with concentric activity, followed by eccentric and isometric action for comparative muscle tensions. Estimates of ATP synthesis rates revealed a mechanochemical efficiency [i.e., ATP production rate/work (both in J/s)] of 15.0 ± 1.3% in concentric and 34.7 ± 6.1% in eccentric activity. The estimated maximum ATP production rate was highest in concentric action, suggesting an activation of energy metabolism under these conditions. By using direct measures of metabolic strain and ATP turnover, these data demonstrate a decreasing metabolic efficiency in human muscle action from isometric, to eccentric, to concentric action.


1980 ◽  
Vol 33 (5) ◽  
pp. 613 ◽  
Author(s):  
Minocher Reporter ◽  
Mary L Skotnicki ◽  
Barry G Rolfe

The influence of substances from a conditioned medium of cultured plant cells on nitrogenase activity, respiration and ATP synthesis was investigated in R. tri/olii strain Tl. Nitrogenase activity in strain Tl was dependent on the addition of the plant cell conditioned medium. Studies showed that the initial effects of the plant substances on rhizobial cells was to increase their respiration rate and ATP production. Mutants of strain Tl which were uncoupled in their oxidative phosphorylation, were also tested. However, the plant factors had no effect on respiration and ATP synthesis and also failed to elicit in vitro nitrogenase activity in these mutants. It is proposed that these plant factors act by increasing the efficiency of oxidative phosphorylation, making more ATP available, and thus stimulating nitrogenase activity of R. tri/olii cells.


2003 ◽  
Vol 284 (2) ◽  
pp. C285-C293 ◽  
Author(s):  
Robert S. Balaban ◽  
Salil Bose ◽  
Stephanie A. French ◽  
Paul R. Territo

The role of Ca2+ as a cytosolic signaling molecule between porcine cardiac sarcoplasmic reticulum (SR) ATPase and mitochondrial ATP production was evaluated in vitro. The Ca2+ sensitivity of these processes was determined individually and in a reconstituted system with SR and mitochondria in a 0.5:1 protein-to-cytochrome aa 3 ratio. The half-maximal concentration ( K 1/2) of SR ATPase was 335 nM Ca2+. The ATP synthesis dependence was similar with a K 1/2 of 243 nM for dehydrogenases and 114 nM for overall ATP production. In the reconstituted system, Ca2+ increased thapsigargin-sensitive ATP production (maximum ∼5-fold) with minimal changes in mitochondrial reduced nicotinamide adenine dinucleotide (NADH). NADH concentration remained stable despite graded increases in NADH turnover induced over a wide range of Ca2+ concentrations (0 to ∼500 nM). These data are consistent with a balanced activation of SR ATPase and mitochondrial ATP synthesis by Ca2+ that contributes to a homeostasis of energy metabolism metabolites. It is suggested that this balanced activation by cytosolic Ca2+ is partially responsible for the minimal alteration in energy metabolism intermediates that occurs with changes in cardiac workload in vivo.


1968 ◽  
Vol 106 (1) ◽  
pp. 123-133 ◽  
Author(s):  
D D Tyler ◽  
Jeanine Gonze ◽  
Françoise Lamy ◽  
J. E. Dumont

The influence of mitochondrial inhibitors, including oligomycin, antimycin and rotenone, on the iodide and oxygen uptake and the nucleotide content of incubated sheep thyroid slices was investigated. Each inhibitor strongly suppressed both iodide and oxygen uptake, and decreased the nucleoside triphosphate content of the slices. In most cases the addition of glucose or mitochondrial substrates restored iodide uptake in inhibitor-treated slices. Inhibitor concentrations sufficient to inhibit iodide uptake strongly had only slight effects on the thyroidal Na++K+-activated adenosine triphosphatase. It is concluded that the inhibitors produce their effects by the inhibition in vivo of mitochondrial oxidative phosphorylation. ATP synthesis appears to be essential for iodide uptake to occur, and the high-energy intermediates (or energized state) of oxidative phosphorylation cannot be used to energize the uptake process. To a limited extent glycolytic ATP synthesis can support iodide uptake, which is therefore not exclusively dependent on aerobic metabolism. The mechanism of energy-linked iodide uptake is discussed.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 977.1-977
Author(s):  
A. Potapova ◽  
O. Egorova ◽  
O. Alekseeva ◽  
A. Volkov ◽  
S. Radenska-Lopovok

Background:Ultrasound (US) is a non-invasive and safe imaging method that allows in vivo differentiation of the morphological structures of subcutaneous fat (SCF) tissue in in normal and pathology.Objectives:Reveal features of ultrasound changes in SCF in panniculitis (Pn).Methods:57 patients (f – 45, m - 12) aged 18 - 67 years with an initial diagnosis of erythema nodosum and a disease duration of 3.6 ± 1.4 years were examined. In addition to the general clinical examination, a computed tomography of the chest organs and a pathomorphological examination of a skin biopsy from the site of the node were performed. Ultrasound was performed on a MyLabTwice apparatus (ESAOTE, Italy) using a multi-frequency linear transducer (10-18 MHz) with the PD technique, the parameters of which were adapted for recording low-speed flows (PRF 300-600 Hz, low filter, dynamic range - 20-40 dB), the presence of vascularization was assessed not only in the affected area, but also on the contralateral side using high-energy Doppler.Results:33 patients were diagnosed with septal Pn (SPn), 24 - lobular Pn (LPn). In all cases, the diagnosis was verified by histological examination. Ultrasound made it possible to assess the thickness, echoicity and vascularization of the SCF. In 35 patients, significant thickening of the SCF was revealed (as compared to the contralateral side), of which in 14 cases with SPn, in 21 - with LPn. Significant diffuse thickening of the SCF with the contralateral side was observed in 18 patients, incl. in 12 (66%) patients with LPn. Limited thickening was more typical for SPn (73%). A significant increase in the echoicity of the SCF was noted in all forms of Pn. A “lobular” echo pattern with an anechogenic environment was observed in 25 patients, of which 18 (72%) had LPn. An increase in vascularization compared to the contralateral side was recorded in 30 cases (SPn-17, LPn-13).Conclusion:The obtained preliminary results indicate the important role of ultrasound in assessing the depth and prevalence of the inflammatory process at Pn. To clarify the diagnostic value of this method, further studies are needed on a larger sample of patients.Disclosure of Interests:None declared


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Fangfang Tao ◽  
Yanrong Zhang ◽  
Zhiqian Zhang

Mitochondria are highly dynamic double-membrane organelles which play a well-recognized role in ATP production, calcium homeostasis, oxidation-reduction (redox) status, apoptotic cell death, and inflammation. Dysfunction of mitochondria has long been observed in a number of human diseases, including cancer. Targeting mitochondria metabolism in tumors as a cancer therapeutic strategy has attracted much attention for researchers in recent years due to the essential role of mitochondria in cancer cell growth, apoptosis, and progression. On the other hand, a series of studies have indicated that traditional medicinal herbs, including traditional Chinese medicines (TCM), exert their potential anticancer effects as an effective adjunct treatment for alleviating the systemic side effects of conventional cancer therapies, for reducing the risk of recurrence and cancer mortality and for improving the quality of patients’ life. An amazing feature of these structurally diverse bioactive components is that majority of them target mitochondria to provoke cancer cell-specific death program. The aim of this review is to summarize the in vitro and in vivo studies about the role of these herbs, especially their bioactive compounds in the modulation of the disturbed mitochondrial function for cancer therapy.


1985 ◽  
Vol 227 (1) ◽  
pp. 129-136 ◽  
Author(s):  
R G Hansford ◽  
F Castro

The steady-state content of active (dephospho) pyruvate dehydrogenase (PDHA) of suspensions of coupled rat brain mitochondria oxidizing succinate was found to be markedly increased with increasing free Ca2+ ion concentration of the medium, with a half-maximal effect at 10(-6.43) M Ca2+. Other ions were present in these studies at concentrations appropriate for the cytosol. Depolarization of the plasma membrane of synaptosomes caused an increase in the steady-state content of PDHA, with veratridine giving a larger increase than depolarization by 33 mM-KCl. Values were 68 +/- 1% (n = 13) and 81 +/- 1% (n = 19) of maximal activity, for control incubations and incubations in the presence of 30 microM-veratridine, respectively. Measurements of cytosolic free Ca2+ concentrations ([Ca2+]cyt.) in these suspensions of synaptosomes, with the use of the fluorescent Ca2+-indicator Quin-2, indicated an increase on depolarization, with the change due to 30 microM-veratridine being larger in extent than that due to 33 mM-KCl. Values were 217 +/- 21 nM (n = 15), 544 +/- 48 nM (n = 15) and 783 +/- 75 nM (n = 14) for control, KCl-depolarized and veratridine-depolarized synaptosomes respectively. Experiments in which synaptosomes were treated with Ruthenium Red, an inhibitor of mitochondrial Ca2+ uptake, gave much lower resting contents of PDHA (42 +/- 2% of maximal), but failed to prevent totally an increase on depolarization. Addition of an excess of EGTA to the synaptosomal suspension just before the addition of veratridine resulted in a partial diminution in the response of PDHA content. Parallel studies with Quin-2 indicated no increase in [Ca2+]cyt. on addition of veratridine, under these conditions. Thus an increase in [Ca2+]cyt. forms only a part of the mechanism whereby pyruvate dehydrogenase interconversion responds to depolarization. A decrease in the ATP/ADP ratio may also be important, as inferred from the results of experiments with ouabain, which inhibits the Na+ + K+-dependent ATPase.


Author(s):  
You Dong Liu ◽  
Xiao Peng Zhuang ◽  
Dong Lan Cai ◽  
Can Cao ◽  
Qi Sheng Gu ◽  
...  

Abstract Background MicroRNAs (miRNAs) are abundant in tumor-derived extracellular vesicles (EVs) and the functions of extracellular miRNA to recipient cells have been extensively studied with tumorigenesis. However, the role of miRNA in EV secretion from cancer cells remains unknown. Methods qPCR and bioinformatics analysis were applied for determining extracellular let-7a expression from CRC patient serum and cells. Nanosight particle tracking analysis was performed for investigating the effect of let-7a on EV secretion. Luciferase reporter assays was used for identifying targeted genes synaptosome-associated protein 23 (SNAP23). In vitro and in vivo assays were used for exploring the function of let-7a/SNAP23 axis in CRC progression. Bioenergetic assays were performed for investigating the role of let-7a/SNAP23 in cellular metabolic reprogramming. Results let-7a miRNA was elevated in serum EVs from CRC patients and was enriched in CRC cell-derived EVs. We determined that let-7a could suppress EV secretion directly targeting SNAP23. In turn, SNAP23 promotes EV secretion of let-7a to downregulate the intracellular let-7a expression. In addition, we found a novel mechanism of let-7a/SNAP23 axis by regulating mitochondrial oxidative phosphorylation (OXPHOS) through Lin28a/SDHA signaling pathway. Conclusions Let-7a plays an essential role in not only inhibiting EV secretion, but also suppressing OXPHOS through SNAP23, resulting in the suppression of CRC progression, suggesting that let-7a/SNAP23 axis could provide not only effective tumor biomarkers but also novel targets for tumor therapeutic strategies.


Author(s):  
Jessica N. Peoples ◽  
Nasab Ghazal ◽  
Duc M. Duong ◽  
Katherine R. Hardin ◽  
Janet R. Manning ◽  
...  

Mitochondria are recognized as signaling organelles because, under stress, mitochondria can trigger various signaling pathways to coordinate the cell's response. The specific pathway(s) engaged by mitochondria in response to mitochondrial energy defects in vivo and in high-energy tissues like the heart are not fully understood. Here, we investigated cardiac pathways activated in response to mitochondrial energy dysfunction by studying mice with cardiomyocyte-specific loss of the mitochondrial phosphate carrier (SLC25A3), an established model that develops cardiomyopathy as a result of defective mitochondrial ATP synthesis. Mitochondrial energy dysfunction induced a striking pattern of acylome remodeling, with significantly increased post-translational acetylation and malonylation. Mass spectrometry-based proteomics further revealed that energy dysfunction-induced remodeling of the acetylome and malonylome preferentially impacts mitochondrial proteins. Acetylation and malonylation modified a highly interconnected interactome of mitochondrial proteins, and both modifications were present on the enzyme isocitrate dehydrogenase 2 (IDH2). Intriguingly, IDH2 activity was enhanced in SLC25A3-deleted mitochondria, and further study of IDH2 sites targeted by both acetylation and malonylation revealed that these modifications can have site-specific and distinct functional effects. Finally, we uncovered a novel crosstalk between the two modifications, whereby mitochondrial energy dysfunction-induced acetylation of sirtuin 5 (SIRT5), inhibited its function. Because SIRT5 is a mitochondrial deacylase with demalonylase activity, this finding suggests that acetylation can modulate the malonylome. Together, our results position acylations as an arm of the mitochondrial response to energy dysfunction and suggest a mechanism by which focal disruption to the energy production machinery can have an expanded impact on global mitochondrial function.


Sign in / Sign up

Export Citation Format

Share Document