Tissue-specific control of mitochondrial respiration in obesity-related insulin resistance and diabetes

2012 ◽  
Vol 302 (6) ◽  
pp. E731-E739 ◽  
Author(s):  
Maria H. Holmström ◽  
Eduardo Iglesias-Gutierrez ◽  
Juleen R. Zierath ◽  
Pablo M. Garcia-Roves

The tissue-specific role of mitochondrial respiratory capacity in the development of insulin resistance and type 2 diabetes is unclear. We determined mitochondrial function in glycolytic and oxidative skeletal muscle and liver from lean (+/ ?) and obese diabetic ( db/db) mice. In lean mice, the mitochondrial respiration pattern differed between tissues. Tissue-specific mitochondrial profiles were then compared between lean and db/db mice. In liver, mitochondrial respiratory capacity and protein expression, including peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), was decreased in db/db mice, consistent with increased mitochondrial fission. In glycolytic muscle, mitochondrial respiration, as well as protein and mRNA expression of mitochondrial markers, was increased in db/db mice, suggesting increased mitochondrial content and fatty acid oxidation capacity. In oxidative muscle, mitochondrial complex I function and PGC-1α and mitochondrial transcription factor A (TFAM) protein levels were decreased in db/db mice, along with increased level of proteins related to mitochondrial dynamics. In conclusion, mitochondrial respiratory performance is under the control of tissue-specific mechanisms and is not uniformly altered in response to obesity. Furthermore, insulin resistance in glycolytic skeletal muscle can be maintained by a mechanism independent of mitochondrial dysfunction. Conversely, insulin resistance in liver and oxidative skeletal muscle from db/db mice is coincident with mitochondrial dysfunction.

2017 ◽  
Vol 103 (3) ◽  
pp. 882-889 ◽  
Author(s):  
Timothy P Gavin ◽  
Jacob M Ernst ◽  
Hyo-Bum Kwak ◽  
Sarah E Caudill ◽  
Melissa A Reed ◽  
...  

Abstract Context Almost 50% of type 2 diabetic (T2D) patients are poorly controlled [glycated hemoglobin (HbA1c) ≥ 7%]; however, the mechanisms responsible for progressively worsening glycemic control are poorly understood. Lower skeletal muscle mitochondrial respiratory capacity is associated with low insulin sensitivity and the development of T2D. Objective We investigated if skeletal muscle insulin sensitivity (SI) was different between well-controlled T2D (WCD) and poorly controlled T2D (PCD) and if the difference was associated with differences resulting from mitochondrial respiratory function. Design Vastus lateralis muscle mitochondrial respiration, mitochondrial content, mitochondrial enzyme activity, and fatty acid oxidation (FAO) were measured. SI and the acute response to glucose (AIRg) were calculated by MINMOD analysis from glucose and insulin obtained during a modified, frequently sampled, intravenous glucose tolerance test. Results SI and AIRg were lower in PCD than WCD. Muscle incomplete FAO was greater in PCD than WCD and greater incomplete FAO was associated with lower SI and higher HbA1c. Hydroxyacyl-coenzyme A dehydrogenase expression and activity were greater in PCD than WCD. There was no difference in maximal mitochondrial respiration or content between WCD and PCD. Conclusion The current results suggest that greater skeletal muscle incomplete FAO in poorly controlled T2D is due to elevated β oxidation and is associated with worsening muscle SI.


2013 ◽  
Vol 305 (11) ◽  
pp. G868-G880 ◽  
Author(s):  
E. Matthew Morris ◽  
Matthew R. Jackman ◽  
Grace M. E. Meers ◽  
Ginger C. Johnson ◽  
Jordan L. Lopez ◽  
...  

Changes in substrate utilization and reduced mitochondrial respiratory capacity following exposure to energy-dense, high-fat diets (HFD) are putatively key components in the development of obesity-related metabolic disease. We examined the effect of a 3-day HFD on isolated liver mitochondrial respiration and whole body energy utilization in obesity-prone (OP) rats. We also examined if hepatic overexpression of peroxisomal proliferator-activated receptor-γ coactivator-1α (PGC-1α), a master regulator of mitochondrial respiratory capacity and biogenesis, would modify liver and whole body responses to the HFD. Acute, 3-day HFD (45% kcal) in OP rats resulted in increased daily energy intake, energy balance, weight gain, and adiposity, without an increase in liver triglyceride (triacylglycerol) accumulation. HFD-fed OP rats also displayed decreased whole body substrate switching from the dark to the light cycle, which was paired with reductions in hepatic mitochondrial respiration of multiple substrates in multiple respiratory states. Hepatic PGC-1α overexpression was observed to protect whole body substrate switching, as well as maintain mitochondrial respiration, following the acute HFD. Additionally, liver PGC-1α overexpression did not alter whole body dietary fatty acid oxidation but resulted in greater storage of dietary free fatty acids in liver lipid, primarily as triacylglycerol. Together, these data demonstrate that a short-term HFD can result in a decrease in metabolic flexibility and hepatic mitochondrial respiratory capacity in OP rats that is completely prevented by hepatic overexpression of PGC-1α.


2019 ◽  
Vol 317 (1) ◽  
pp. R68-R82 ◽  
Author(s):  
Jessica L. Halle ◽  
Gabriel S. Pena ◽  
Hector G. Paez ◽  
Adrianna J. Castro ◽  
Harry B. Rossiter ◽  
...  

In addition to skeletal muscle dysfunction, cancer cachexia is a systemic disease involving remodeling of nonmuscle organs such as adipose and liver. Impairment of mitochondrial function is associated with multiple chronic diseases. The tissue-specific control of mitochondrial function in cancer cachexia is not well defined. This study determined mitochondrial respiratory capacity and coupling control of skeletal muscle, white adipose tissue (WAT), and liver in colon-26 (C26) tumor-induced cachexia. Tissues were collected from PBS-injected weight-stable mice, C26 weight-stable mice and C26 mice with moderate (10% weight loss) and severe cachexia (20% weight loss). The respiratory control ratio [(RCR) an index of oxidative phosphorylation (OXPHOS) coupling efficiency] was low in WAT during the induction of cachexia because of high nonphosphorylating LEAK respiration. Liver RCR was low in C26 weight-stable and moderately cachexic mice because of reduced OXPHOS. Liver RCR was further reduced with severe cachexia, where Ant2 but not Ucp2 expression was increased. Ant2 was inversely correlated with RCR in the liver ( r = −0.547, P < 0.01). Liver cardiolipin increased in moderate and severe cachexia, suggesting this early event may also contribute to mitochondrial uncoupling. Impaired skeletal muscle mitochondrial respiration occurred predominantly in severe cachexia, at complex I. These findings suggest that mitochondrial function is subject to tissue-specific control during cancer cachexia, whereby remodeling in WAT and liver arise early and may contribute to altered energy balance, followed by impaired skeletal muscle respiration. We highlight an under-recognized role of liver and WAT mitochondrial function in cancer cachexia and suggest mitochondrial function of multiple tissues to be therapeutic targets.


2018 ◽  
Author(s):  
Andy V Khamoui ◽  
Jessica L Halle ◽  
Gabriel S Pena ◽  
Hector G Paez ◽  
Harry B Rossiter ◽  
...  

In addition to skeletal muscle dysfunction, recent frameworks describe cancer cachexia as a systemic disease involving remodeling of non-muscle organs such as adipose and liver. Impairment of mitochondrial function is associated with multiple diseases. The tissue-specific control of mitochondrial function in cancer cachexia is not well-defined. This study determined mitochondrial respiratory capacity and coupling control of skeletal muscle, white adipose tissue (WAT), and liver in colon-26 (C26) tumor-induced cachexia. Tissues were collected from PBS-injected weight-stable mice, C26 mice that were weight-stable, and C26 mice with moderate (10% weight loss) and severe cachexia (20% weight loss). WAT showed high non-phosphorylating LEAK respiration and reduced respiratory control ratio (RCR, index of OXPHOS coupling efficiency) during the induction of cachexia. Liver RCR decreased early due to cancer, and further declined with severe cachexia, where Ant2 but not Ucp2 expression was increased. Ant2 also related inversely with RCR in the liver (r=-0.547, p<0.01), suggesting a role for Ant2 in uncoupling of liver OXPHOS. Increased liver cardiolipin occurred during moderate cachexia and remained elevated in severe cachexia, suggesting this early event may also contribute to uncoupling. Impaired skeletal muscle mitochondrial respiration occurred predominantly in severe cachexia. These findings suggest that mitochondrial function is subject to tissue-specific control during cancer cachexia, whereby remodeling in WAT and liver arise early and could contribute to altered energy balance, followed by impaired skeletal muscle respiration. We highlight an underrecognized role of liver mitochondria in cancer cachexia, and suggest mitochondrial function of multiple tissues to be targets for therapeutic intervention.


2016 ◽  
Vol 311 (5) ◽  
pp. R879-R887 ◽  
Author(s):  
Oh Sung Kwon ◽  
Daniel S. Nelson ◽  
Katherine M. Barrows ◽  
Ryan M. O'Connell ◽  
Micah J. Drummond

Physical inactivity and disuse result in skeletal muscle metabolic disruption, including insulin resistance and mitochondrial dysfunction. The role of the Toll-like receptor 4 (TLR4) signaling pathway in contributing to metabolic decline with muscle disuse is unknown. Therefore, our goal was to determine whether TLR4 is an underlying mechanism of insulin resistance, mitochondrial dysfunction, and skeletal muscle ceramide accumulation following muscle disuse in mice. To address this hypothesis, we subjected ( n = 6–8/group) male WT and TLR4−/− mice to 2 wk of hindlimb unloading (HU), while a second group of mice served as ambulatory wild-type controls (WT CON, TLR4−/− CON). Mice were assessed for insulin resistance [homeostatic model assessment-insulin resistance (HOMA-IR), glucose tolerance], and hindlimb muscles (soleus and gastrocnemius) were used to assess muscle sphingolipid abundance, mitochondrial respiration [respiratory control ratio (RCR)], and NF-κB signaling. The primary finding was that HU resulted in insulin resistance, increased total ceramides, specifically Cer18:0 and Cer20:0, and decreased skeletal muscle mitochondrial respiration. Importantly, TLR4−/− HU mice were protected from insulin resistance and altered NF-κB signaling and were partly resistant to muscle atrophy, ceramide accumulation, and decreased RCR. Skeletal muscle ceramides and RCR were correlated with insulin resistance. We conclude that TLR4 is an upstream regulator of insulin sensitivity, while partly upregulating muscle ceramides and worsening mitochondrial respiration during 2 wk of HU.


Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1560-1569 ◽  
Author(s):  
Teresa Coll ◽  
David Álvarez-Guardia ◽  
Emma Barroso ◽  
Anna Maria Gómez-Foix ◽  
Xavier Palomer ◽  
...  

Elevated plasma free fatty acids cause insulin resistance in skeletal muscle through the activation of a chronic inflammatory process. This process involves nuclear factor (NF)-κB activation as a result of diacylglycerol (DAG) accumulation and subsequent protein kinase Cθ (PKCθ) phosphorylation. At present, it is unknown whether peroxisome proliferator-activated receptor-δ (PPARδ) activation prevents fatty acid-induced inflammation and insulin resistance in skeletal muscle cells. In C2C12 skeletal muscle cells, the PPARδ agonist GW501516 prevented phosphorylation of insulin receptor substrate-1 at Ser307 and the inhibition of insulin-stimulated Akt phosphorylation caused by exposure to the saturated fatty acid palmitate. This latter effect was reversed by the PPARδ antagonist GSK0660. Treatment with the PPARδ agonist enhanced the expression of two well known PPARδ target genes involved in fatty acid oxidation, carnitine palmitoyltransferase-1 and pyruvate dehydrogenase kinase 4 and increased the phosphorylation of AMP-activated protein kinase, preventing the reduction in fatty acid oxidation caused by palmitate exposure. In agreement with these changes, GW501516 treatment reversed the increase in DAG and PKCθ activation caused by palmitate. These effects were abolished in the presence of the carnitine palmitoyltransferase-1 inhibitor etomoxir, thereby indicating that increased fatty acid oxidation was involved in the changes observed. Consistent with these findings, PPARδ activation by GW501516 blocked palmitate-induced NF-κB DNA-binding activity. Likewise, drug treatment inhibited the increase in IL-6 expression caused by palmitate in C2C12 and human skeletal muscle cells as well as the protein secretion of this cytokine. These findings indicate that PPARδ attenuates fatty acid-induced NF-κB activation and the subsequent development of insulin resistance in skeletal muscle cells by reducing DAG accumulation. Our results point to PPARδ activation as a pharmacological target to prevent insulin resistance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liselotte Bruun Christiansen ◽  
Tine Lovsø Dohlmann ◽  
Trine Pagh Ludvigsen ◽  
Ewa Parfieniuk ◽  
Michal Ciborowski ◽  
...  

AbstractStatins lower the risk of cardiovascular events but have been associated with mitochondrial functional changes in a tissue-dependent manner. We investigated tissue-specific modifications of mitochondrial function in liver, heart and skeletal muscle mediated by chronic statin therapy in a Göttingen Minipig model. We hypothesized that statins enhance the mitochondrial function in heart but impair skeletal muscle and liver mitochondria. Mitochondrial respiratory capacities, citrate synthase activity, coenzyme Q10 concentrations and protein carbonyl content (PCC) were analyzed in samples of liver, heart and skeletal muscle from three groups of Göttingen Minipigs: a lean control group (CON, n = 6), an obese group (HFD, n = 7) and an obese group treated with atorvastatin for 28 weeks (HFD + ATO, n = 7). Atorvastatin concentrations were analyzed in each of the three tissues and in plasma from the Göttingen Minipigs. In treated minipigs, atorvastatin was detected in the liver and in plasma. A significant reduction in complex I + II-supported mitochondrial respiratory capacity was seen in liver of HFD + ATO compared to HFD (P = 0.022). Opposite directed but insignificant modifications of mitochondrial respiratory capacity were seen in heart versus skeletal muscle in HFD + ATO compared to the HFD group. In heart muscle, the HFD + ATO had significantly higher PCC compared to the HFD group (P = 0.0323). In the HFD group relative to CON, liver mitochondrial respiration decreased whereas in skeletal muscle, respiration increased but these changes were insignificant when normalizing for mitochondrial content. Oral atorvastatin treatment in Göttingen Minipigs is associated with a reduced mitochondrial respiratory capacity in the liver that may be linked to increased content of atorvastatin in this organ.


Author(s):  
Emily J. Arentson-Lantz ◽  
Jasmine Mikovic ◽  
Nisha Bhattarai ◽  
Christopher S. Fry ◽  
Séverine Lamon ◽  
...  

Leucine supplementation attenuates the loss of skeletal muscle mass and function in older adults during bed rest. We sought to determine if leucine could also preserve and/or restore mitochondrial function and muscle oxidative capacity during periods of disuse and rehabilitation. Healthy older adults (69.1 ± 1.1 years) consumed a structured diet with supplemental leucine (LEU: 0.06 g/ kg body weight/ meal; n=8) or alanine (CON: 0.06 g/ kg body weight/meal; n=8) during 7 days of bed rest and 5 days of inpatient rehabilitation. A 75 g oral glucose tolerance test was performed at baseline (PreBR), after bed rest (PostBR) and rehabilitation (PostRehab) and used to calculate an indicator of insulin sensitivity, metabolic clearance rate. (MCR). Tissue samples from the m. vastus lateralis were collected PreBR, PostBR, and PostRehab to assess mitochondrial respiratory capacity and protein markers of the oxidative phosphorylation and a marker of the antioxidant defense systems. During bed rest, leucine tended to preserve insulin sensitivity (Change in MCR, CON vs. LEU: -3.5 ± 0.82 vs LEU: -0.98 ± 0.88, p=0.054), but had no effect on mitochondrial respiratory capacity (Change in State 3+succinate CON vs. LEU -8.7 ± 6.1 vs. 7.3 ± 4.1 pmol O2/sec/mg tissue, p=0.10) Following rehabilitation, leucine increased ATP-linked respiration (CON vs. LEU: -8.9 ± 6.2 vs. 15.5± 4.4 pmol O2/sec/mg tissue, p=0.0042). While the expression of mitochondrial respiratory and antioxidant proteins was not impacted, leucine supplementation preserved specific pathways of mitochondrial respiration, insulin sensitivity and a marker of oxidative stress during bed rest and rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document