Enhanced trabecular bone resorption and microstructural bone changes in rats after removal of the cecum

2012 ◽  
Vol 303 (8) ◽  
pp. E1069-E1075 ◽  
Author(s):  
Narattaphol Charoenphandhu ◽  
Panan Suntornsaratoon ◽  
Prapaporn Jongwattanapisan ◽  
Kannikar Wongdee ◽  
Nateetip Krishnamra

The cecum, the proximal part of the large intestine, has the highest rate of calcium absorption compared with other intestinal segments. Previously, we showed that rats with the cecum surgically removed (cecectomized rats) had severe negative calcium balance, low bone mineral density (BMD), and a compensatory increase in colonic calcium absorption. Herein, we used the computer-assisted bone histomorphometric technique and microcomputed tomography (μCT) to analyze bone microstructural defects in cecectomized rats at 1 and 3 mo postsurgery compared with age-matched sham-operated control rats. Relatively low BMD as determined by dual energy X-ray absorptiometry was observed in the femora, tibiae, and lumbar vertebrae of the 3-mo cecectomized rats. μCT analysis revealed decreases in the tibial cortical thickness, periosteal and endosteal perimeters, and moment of inertia in cecectomized rats. The histomorphometric results further showed that trabecular bone volume and number were markedly decreased, whereas trabecular separation was increased in the proximal tibial metaphysis of cecectomized rats, thus leading to a decrease in trabecular volumetric BMD. Since osteoclast surface and eroded surface were increased after cecectomy, such bone loss in cecectomized rats appeared to result from an enhanced bone resorption. Moreover, decreases in bone formation rate and osteoblast surface indicated a suppression of osteoblast-mediated bone formation. In conclusion, cecectomy induced widespread osteopenia in rats presumably by enhancing the osteoclast-mediated bone resorption and suppressing bone formation. The present results underline the important role of cecum in the body calcium homeostasis.

1998 ◽  
Vol 12 (1) ◽  
pp. 71-75 ◽  
Author(s):  
S. Williams ◽  
A. Wakisaka ◽  
Q.Q. Zeng ◽  
J. Barnes ◽  
S. Seyedin ◽  
...  

The effect of oral minocycline on osteopenia in ovariectomized (OVX) old rats was examined in this study. Rats were divided into 4 groups: sham-operated, OVX followed by treatment with vehicle, minocycline, or 17β-estradiol. The treatment was initiated one day after OVX and proceeded for 8 wks. OVX reduced bone mineral density (BMD) in the whole femur and in the femoral regions that are enriched in trabecular bone. Treatment with minocycline or estrogen prevented a decrease in BMD. Femoral trabecular bone area, trabecular number, and trabecular thickness were reduced, and trabecular separation was increased by OVX. Treatment with minocycline or estrogen abolished the detrimental effects induced by OVX. OVX also reduced indices that reflect the interconnectivity of trabecular bone, and the loss of trabecular connectivity was prevented by treatment with minocycline or estrogen. Based on the levels of urinary pyridinoline, we showed that the effect of estrogen, but not minocycline, was primarily through its inhibitory effect on bone resorption. Analysis of bone turnover activity suggests that OVX increased parameters associated with bone resorption (eroded surface) and formation (osteoid surface, mineralizing surface, mineral apposition rate, and bone formation rate). Treatment with minocycline reduced bone resorption modestly and stimulated bone formation substantially. In contrast, treatment with estrogen drastically reduced parameters associated with both bone resorption and formation. We have concluded that oral minocycline can effectively prevent the decrease in BMD and trabecular bone through its dual effects on bone resorption and formation.


1986 ◽  
Vol 251 (4) ◽  
pp. E400-E406 ◽  
Author(s):  
P. J. Marie ◽  
L. Cancela ◽  
N. Le Boulch ◽  
L. Miravet

The effects of pregnancy and lactation on endosteal bone formation and resorption were evaluated in vitamin D-depleted (-D) and vitamin D-repleted (+D) rats. Pregnancy induced a marked stimulation of osteoclastic bone resorption and of static and dynamic parameters of bone formation and mineralization. Bone resorption increased independently of vitamin D status and did not correlate with plasma 1,25-dihydroxyvitamin D3 [1,25(OH)2D] levels, but it was associated with increased plasma immunoreactive parathyroid hormone (iPTH) concentrations. Stimulation of the endosteal bone formation rate was mainly impaired in D-depleted rats, resulting in trabecular bone loss, which, in -D mother rats, was associated with decreased bone ash and total bone calcium. Lactation further stimulated bone resorption and reduced the trabecular bone volume; ash weight and bone calcium content were also decreased independently of the vitamin D status and changes in plasma iPTH levels. In presence of vitamin D, the bone formation rate increased fourfold during lactation but was unchanged in -D lactating rats. During lactation, vitamin D-depleted rats lost twofold more calcified bone than +D rats because of impaired mineralization. Thus, the present study shows that both the endosteal bone resorption and formation are stimulated by pregnancy and lactation and that vitamin D is required for normal bone mineralization during the reproductive period.


2018 ◽  
Vol 238 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Thomas Funck-Brentano ◽  
Karin H Nilsson ◽  
Robert Brommage ◽  
Petra Henning ◽  
Ulf H Lerner ◽  
...  

WNT signaling is involved in the tumorigenesis of various cancers and regulates bone homeostasis. Palmitoleoylation of WNTs by Porcupine is required for WNT activity. Porcupine inhibitors are under development for cancer therapy. As the possible side effects of Porcupine inhibitors on bone health are unknown, we determined their effects on bone mass and strength. Twelve-week-old C57BL/6N female mice were treated by the Porcupine inhibitors LGK974 (low dose = 3 mg/kg/day; high dose = 6 mg/kg/day) or Wnt-C59 (10 mg/kg/day) or vehicle for 3 weeks. Bone parameters were assessed by serum biomarkers, dual-energy X-ray absorptiometry, µCT and histomorphometry. Bone strength was measured by the 3-point bending test. The Porcupine inhibitors were well tolerated demonstrated by normal body weight. Both doses of LGK974 and Wnt-C59 reduced total body bone mineral density compared with vehicle treatment (P < 0.001). Cortical thickness of the femur shaft (P < 0.001) and trabecular bone volume fraction in the vertebral body (P < 0.001) were reduced by treatment with LGK974 or Wnt-C59. Porcupine inhibition reduced bone strength in the tibia (P < 0.05). The cortical bone loss was the result of impaired periosteal bone formation and increased endocortical bone resorption and the trabecular bone loss was caused by reduced trabecular bone formation and increased bone resorption. Porcupine inhibitors exert deleterious effects on bone mass and strength caused by a combination of reduced bone formation and increased bone resorption. We suggest that cancer targeted therapies using Porcupine inhibitors may increase the risk of fractures.


2010 ◽  
Vol 299 (3) ◽  
pp. E426-E436 ◽  
Author(s):  
Panan Suntornsaratoon ◽  
Kannikar Wongdee ◽  
Suchandra Goswami ◽  
Nateetip Krishnamra ◽  
Narattaphol Charoenphandhu

The lactogenic hormone prolactin (PRL) directly regulates osteoblast functions in vitro and modulates bone remodeling in nulliparous rats, but its osteoregulatory roles in pregnant and lactating rats with physiological hyperprolactinemia remained unclear. Herein, bone changes were investigated in rats treated with bromocriptine (Bromo), an inhibitor of pituitary PRL release, or Bromo+PRL at different reproductive phases, from mid-pregnancy to late lactation. PRL receptors were strongly expressed in osteoblasts lining bone trabeculae, indicating bone as a target of PRL actions. By using dual energy X-ray absorptiometry, we found a significant increase in bone mineral density in the femora and vertebrae of pregnant rats. Such pregnancy-induced bone gain was, however, PRL independent and may have resulted from the increased cortical thickness. Bone trabeculae were modestly changed during pregnancy as evaluated by bone histomorphometry. On the other hand, lactating rats, especially in late lactation, showed massive bone loss in bone trabeculae but not in cortical shells. Further study in Bromo- and Bromo+PRL-treated rats suggested that PRL contributed to decreases in trabecular bone volume and number and increases in trabecular separation and eroded surface, as well as a paradoxical increase in bone formation rate in late lactation. Uncoupling of trabecular bone formation and resorption was evident in lactating rats, with the latter being predominant. In conclusion, pregnancy mainly induced cortical bone gain, whereas lactation led to trabecular bone loss in both long bones and vertebrae. Although PRL was not responsible for the pregnancy-induced bone gain, it was an important regulator of bone modeling during lactation.


2015 ◽  
Vol 309 (11) ◽  
pp. E936-E948 ◽  
Author(s):  
Kanogwun Thongchote ◽  
Saovaros Svasti ◽  
Jarinthorn Teerapornpuntakit ◽  
Panan Suntornsaratoon ◽  
Nateetip Krishnamra ◽  
...  

β-Thalassemia, a hereditary anemic disorder, is often associated with skeletal complications that can be found in both males and females. The present study aimed to investigate the age- and sex-dependent changes in bone mineral density (BMD) and trabecular microstructure in βIVSII-654knockin thalassemic mice. Dual-energy X-ray absorptiometry and computer-assisted bone histomorphometry were employed to investigate temporal changes in BMD and histomorphometric parameters in male and female mice of a βIVSII-654knockin mouse model of human β-thalassemia, in which impaired splicing of β-globin transcript was caused by hemizygous C→T mutation at nucleotide 654 of intron 2. Young, growing βIVSII-654mice (1 mo old) manifested shorter bone length and lower BMD than their wild-type littermates, indicating possible growth retardation and osteopenia, the latter of which persisted until 8 mo of age (adult mice). Interestingly, two-way analysis of variance suggested an interaction between sex and βIVSII-654genotype, i.e., more severe osteopenia in adult female mice. Bone histomorphometry further suggested that low trabecular bone volume in male βIVSII-654mice, particularly during a growing period (1–2 mo), was primarily due to suppression of bone formation, whereas both a low bone formation rate and a marked increase in osteoclast surface were observed in female βIVSII-654mice. In conclusion, osteopenia and trabecular microstructural defects were present in both male and female βIVSII-654knockin thalassemic mice, but the severity, disease progression, and cellular mechanism differed between the sexes.


2014 ◽  
Vol 306 (12) ◽  
pp. E1406-E1417 ◽  
Author(s):  
Kanogwun Thongchote ◽  
Saovaros Svasti ◽  
Jarinthorn Teerapornpuntakit ◽  
Nateetip Krishnamra ◽  
Narattaphol Charoenphandhu

A marked decrease in β-globin production led to β-thalassemia, a hereditary anemic disease associated with bone marrow expansion, bone erosion, and osteoporosis. Herein, we aimed to investigate changes in bone mineral density (BMD) and trabecular microstructure in hemizygous β-globin knockout thalassemic (BKO) mice and to determine whether endurance running (60 min/day, 5 days/wk for 12 wk in running wheels) could effectively alleviate bone loss in BKO mice. Both male and female BKO mice (1–2 mo old) showed growth retardation as indicated by smaller body weight and femoral length than their wild-type littermates. A decrease in BMD was more severe in female than in male BKO mice. Bone histomorphometry revealed that BKO mice had decreases in trabecular bone volume, trabecular number, and trabecular thickness, presumably due to suppression of osteoblast-mediated bone formation and activation of osteoclast-mediated bone resorption, the latter of which was consistent with elevated serum levels of osteoclastogenic cytokines IL-1α and -1β. As determined by peripheral quantitative computed tomography, running increased cortical density and thickness in the femoral and tibial diaphyses of BKO mice compared with those of sedentary BKO mice. Several histomorphometric parameters suggested an enhancement of bone formation (e.g., increased mineral apposition rate) and suppression of bone resorption (e.g., decreased osteoclast surface), which led to increases in trabecular bone volume and trabecular thickness in running BKO mice. In conclusion, BKO mice exhibited pervasive osteopenia and impaired bone microstructure, whereas running exercise appeared to be an effective intervention in alleviating bone microstructural defect in β-thalassemia.


2002 ◽  
Vol 93 (3) ◽  
pp. 1152-1158 ◽  
Author(s):  
Takuya Notomi ◽  
Yuichi Okazaki ◽  
Nobukazu Okimoto ◽  
Yuri Tanaka ◽  
Toshitaka Nakamura ◽  
...  

To determine the effects of a tower climbing exercise on mass, strength, and local turnover of bone, 70 9-wk-old Sprague-Dawley rats were assigned to seven groups: a baseline control and three groups of sham-operated sedentary, orchidectomized (ORX)-sedentary and ORX-exercise rats. Rats voluntarily climbed a 200-cm tower to drink water from a bottle set at the top. At 4 wk, the periosteal bone formation rate (BFR), moment of inertia, bone mineral content, bone mineral density, and bending load at the midfemur were maintained in ORX-exercise rats, whereas these parameters were reduced in ORX-sedentary rats. At 8 wk, the periosteal mineral apposition rate and BFR in ORX-exercise rats were significantly higher, whereas the parameters in ORX-sedentary rats did not differ compared with sham-sedentary rats. In ORX-exercise rats, the trabecular mineralizing surface, BFR, and bone volume of the lumbar vertebrae were maintained at the same levels as those in the sham-sedentary group, whereas the osteoclast surface decreased compared with the ORX-sedentary group. However, the climbing exercise did not affect bone mineral content, bone mineral density, or the compression load of the lumbar vertebrae. These results show that, in the midfemur, the voluntary climbing exercise maintained cortical bone mass and strength by stimulating periosteal bone formation and partially prevented ORX-induced trabecular bone loss, depressing the elevation of turnover. Interestingly, in ORX rats, the climbing exercise had the opposite effect on bone formation at the periosteal femoral cortical bone, where the exercise increased the bone formation compared with vertebral trabecular bone, where the exercise decreased it.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Rebecca A. Rajfer ◽  
Manuel Flores ◽  
Andrea Abraham ◽  
Eduardo Garcia ◽  
Natalhy Hinojosa ◽  
...  

Osteoporosis represents an imbalance between bone formation and bone resorption. As a result of low estrogen levels, it is markedly prevalent during menopause, thus making such patients susceptible to fractures. Both bone formation and resorption are modulated by nitric oxide (NO). Currently, there are no risk-free pharmaceutical prevention therapies for osteoporosis. COMB-4, a nutraceutical combination of Paullinia cupana, Muira puama, ginger, and L-citrulline, known to activate the NO-cGMP pathway, was reported to accelerate fracture healing in the rat. To determine whether COMB-4 could be effective in preventing menopausal osteoporosis, it was compared to estradiol (E2) in an ovariectomized (OVX) rat osteoporosis model. Nine-month-old female Sprague Dawley rats were divided into SHAM, OVX, OVX+E2, and OVX+COMB-4. After 100 days of treatment, bone mineral density (BMD) and bone mineral content (BMC) were measured by DXA scan. TRAP staining was performed in the femur and lumbar vertebrae. TRACP 5b and osteocalcin levels were assayed in the serum. MC3T3-E1 cells were differentiated into osteoblasts and treated with COMB-4 for one week in order to evaluate calcium deposition by Alizarin staining, cGMP production by ELISA, and upregulation of the nitric oxide synthase (NOS) enzymes by RT-PCR. OVX resulted in a decrease in BMD, BMC, and serum osteocalcin and an increase in serum TRACP 5b. Except for an increase in BMC with COMB-4, both E2 and COMB-4 reverted all bone and serum markers, as well as the number of osteoclasts in the vertebrae, to SHAM levels. Incubation of MC3T3-E1 cells with COMB-4 demonstrated an increase in the three NOS isoforms, cGMP, and calcium deposition. COMB-4 increased BMD in OVX rats by inhibiting bone resorption and increasing calcium deposition presumably via activation of the NO-cGMP pathway. It remains to be determined whether COMB-4 could be a potential nutraceutical therapy for the prevention of premenopausal bone loss.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Rafaela G. Feresin ◽  
Sarah A. Johnson ◽  
Marcus L. Elam ◽  
Jeong-Su Kim ◽  
Dania A. Khalil ◽  
...  

The present study examined the dose-dependent effect of vitamin E in reversing bone loss in ovariectomized (Ovx) rats. Sprague-Dawley rats were either Sham-operated (Sham) or Ovx and fed control diet for 120 days to lose bone. Subsequently, rats were divided into 5 groups (n=12/group): Sham, Ovx-control, low dose (Ovx + 300 mg/kg diet; LD), medium dose (Ovx + 525 mg/kg diet; MD), and high dose (Ovx + 750 mg/kg diet; HD) of vitamin E and sacrificed after 100 days. Animals receiving MD and HD of vitamin E had increased serum alkaline phosphatase compared to the Ovx-control group. Bone histomorphometry analysis indicated a decrease in bone resorption as well as increased bone formation and mineralization in the Ovx groups supplemented with MD and HD of vitamin E. Microcomputed tomography findings indicated no effects of vitamin E on trabecular bone of fifth lumbar vertebrae. Animals receiving HD of vitamin E had enhanced fourth lumbar vertebra quality as evidenced by improved ultimate and yield load and stress when compared to Ovx-control group. These findings demonstrate that vitamin E improves bone quality, attenuates bone resorption, and enhances the rate of bone formation while being unable to restore bone density and trabecular bone structure.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Supitra Namhong ◽  
Kannikar Wongdee ◽  
Panan Suntornsaratoon ◽  
Jarinthorn Teerapornpuntakit ◽  
Ruedee Hemstapat ◽  
...  

Abstract Osteoarthritis (OA) leads to joint pain from intraarticular inflammation with articular cartilage erosion, deterioration of joint function and abnormal subchondral bone structure. Besides aging, chronic repetitive joint injury is a common risk factor in young individuals. Nevertheless, whether OA is associated with bone loss at other skeletal sites is unclear. Since OA-associated proinflammatory cytokines—some of which are osteoclastogenic factors—are often detected in the circulation, we hypothesized that the injury-induced knee OA could result in widespread osteopenia at bone sites distant to the injured knee. Here we performed anterior cruciate ligament transection (ACLT) to induce knee OA in one limb of female Sprague–Dawley rats and determined bone changes post-OA induction by micro-computed tomography and computer-assisted bone histomorphometry. We found that although OA modestly altered bone density, histomorphometric analyses revealed increases in bone resorption and osteoid production with impaired mineralization. The bone formation rate was also reduced in OA rats. In conclusions, ACLT in young growing rats induced microstructural defects in the trabecular portion of weight-bearing (tibia) and non-weight-bearing bones (L5 vertebra), in part by enhancing bone resorption and suppressing bone formation. This finding supports the increasing concern regarding the repetitive sport-related ACL injuries and the consequent bone loss.


Sign in / Sign up

Export Citation Format

Share Document