β-Oxidation of free fatty acids is required to maintain translational control of protein synthesis in heart

2002 ◽  
Vol 283 (6) ◽  
pp. E1144-E1150 ◽  
Author(s):  
Stephen J. Crozier ◽  
Douglas R. Bolster ◽  
Ali K. Reiter ◽  
Scot R. Kimball ◽  
Leonard S. Jefferson

The study described herein investigated the role of free fatty acids (FFAs) in the maintenance of protein synthesis in vivo in rat cardiac and skeletal muscle. Suppression of FFA β-oxidation by methyl palmoxirate caused a marked reduction in protein synthesis in the heart. The effect on protein synthesis was mediated in part by changes in the function of eukaryotic initiation factors (eIFs) involved in the initiation of mRNA translation. The guanine nucleotide exchange activity of eIF2B was repressed, phosphorylation of the α-subunit of eIF2 was enhanced, and phosphorylation of eIF4E-binding protein-1 and ribosomal protein S6 kinase was reduced. Similar changes in protein synthesis and translation initiation were not observed in the gastrocnemius following treatment with methyl palmoxirate. In heart, repressed β-oxidation of FFA correlated, as demarcated by changes in the ATP/AMP ratio and phosphorylation of AMP-activated kinase, with alterations in the energy status of the tissue. Therefore, the activation state of signal transduction pathways that are responsive to cellular energy stress represents one mechanism whereby translation initiation may be regulated in cardiac muscle.

2000 ◽  
Vol 278 (1) ◽  
pp. E76-E82 ◽  
Author(s):  
O. Jameel Shah ◽  
Scot R. Kimball ◽  
Leonard S. Jefferson

Glucocorticoids are diabetogenic factors that not only antagonize the action of insulin in target tissues but also render these tissues catabolic. Therefore, in rats, we endeavored to characterize the effects in skeletal muscle of glucocorticoids on translation initiation, a regulated process that, in part, governs overall protein synthesis through the modulated activities of eukaryotic initiation factors (eIFs). Four hours after intraperitoneal administration of dexamethasone (100 μg/100 g body wt), protein synthesis in skeletal muscle was reduced to 59% of the value recorded in untreated control animals. Furthermore, translation initiation factor eIF4E preferred association with its endogenous inhibitor 4E-BP1 rather than eIF4G. Dexamethasone treatment resulted in dephosphorylation of both 4E-BP1 and the 40S ribosomal protein S6 kinase concomitant with enhanced phosphorylation of eIF4E. Moreover, the guanine nucleotide exchange activity of eIF2B was unaffected as was phosphorylation of the α-subunit of eIF2. Hence glucocorticoids negatively modulate the activation of a subset of the protein synthetic machinery, thereby contributing to the catabolic properties of this class of hormones in vivo.


2005 ◽  
Vol 289 (3) ◽  
pp. H1242-H1250 ◽  
Author(s):  
Stephen J. Crozier ◽  
Thomas C. Vary ◽  
Scot R. Kimball ◽  
Leonard S. Jefferson

Mechanisms regulating ischemia and reperfusion (I/R)-induced changes in mRNA translation in the heart are poorly defined, as are the factors that initiate these changes. Because cellular energy status affects mRNA translation under physiological conditions, it is plausible that I/R-induced changes in translation may in part be a result of altered cellular energy status. Therefore, the purpose of the studies described herein was to compare the effects of I/R with those of altered energy substrate availability on biomarkers of mRNA translation in the heart. Isolated adult rat hearts were perfused with glucose or a combination of glucose plus palmitate, and effects of I/R on various biomarkers of translation were subsequently analyzed. When compared with hearts perfused with glucose plus palmitate, hearts perfused with glucose alone exhibited increased phosphorylation of eukaryotic elongation factor (eEF)2, the α-subunit of eukaryotic initiation factor (eIF)2, and AMP-activated protein kinase (AMPK), and these hearts also exhibited enhanced association of eIF4E with eIF4E binding protein (4E-BP)1. Regardless of the energy substrate composition of the buffer, phosphorylation of eEF2 and AMPK was greater than control values after ischemia. Phosphorylation of eIF2α and eIF4E and the association of eIF4E with 4E-BP1 were also greater than control values after ischemia but only in hearts perfused with glucose plus palmitate. Reperfusion reversed the ischemia-induced increase in eEF2 phosphorylation in hearts perfused with glucose and reversed ischemia-induced changes in eIF4E, eEF2, and AMPK phosphorylation in hearts perfused with glucose plus palmitate. Because many ischemia-induced changes in mRNA translation are mimicked by the removal of a metabolic substrate under normal perfusion conditions, the results suggest that cellular energy status represents an important modulator of I/R-induced changes in mRNA translation.


2006 ◽  
Vol 290 (6) ◽  
pp. E1267-E1275 ◽  
Author(s):  
Laura K. Palmer ◽  
Sharon L. Rannels ◽  
Scot R. Kimball ◽  
Leonard S. Jefferson ◽  
Ralph L. Keil

Volatile anesthetics are essential for modern medical practice, but sites and mechanisms of action for any of their numerous cellular effects remain largely unknown. Previous studies with yeast showed that volatile anesthetics induce nutrient-dependent inhibition of growth through mechanisms involving inhibition of mRNA translation. Studies herein show that the volatile anesthetic halothane inhibits protein synthesis in perfused rat liver at doses ranging from 2 to 6%. A marked disaggregation of polysomes occurs, indicating that inhibition of translation initiation plays a key role. Dose- and time-dependent alterations that decrease the function of a variety of translation initiation processes are observed. At 6% halothane, a rapid and persistent increase in phosphorylation of the α-subunit of eukaryotic translation initiation factor (eIF)2 occurs. This is accompanied by inhibition of activity of the guanine nucleotide exchange factor eIF2B that is responsible for GDP-GTP exchange on eIF2. At lower doses, neither eIF2α phosphorylation nor eIF2B activity is altered. After extended exposure to 6% halothane, alterations in two separate responses regulated by the target of rapamycin pathway occur: 1) redistribution of eIF4E from its translation-stimulatory association with eIF4G to its translation-inactive complex with eIF4E-binding protein-1; and 2) decreased phosphorylation of ribosomal protein S6 (rpS6) with a corresponding decrease in active forms of a kinase that phosphorylates rpS6 (p70S6K1). Changes in the association of eIF4E and eIF4G are observed only after extended exposure to low anesthetic doses. Thus dose- and time-dependent alterations in multiple processes permit liver cells to adapt translation to variable degrees and duration of stress imposed by anesthetic exposure.


2002 ◽  
Vol 93 (3) ◽  
pp. 1168-1180 ◽  
Author(s):  
Scot R. Kimball ◽  
Peter A. Farrell ◽  
Leonard S. Jefferson

Protein synthesis in skeletal muscle is modulated in response to a variety of stimuli. Two stimuli receiving a great deal of recent attention are increased amino acid availability and exercise. Both of these effectors stimulate protein synthesis in part through activation of translation initiation. However, the full response of translation initiation and protein synthesis to either effector is not observed in the absence of a minimal concentration of insulin. The combination of insulin and either increased amino acid availability or endurance exercise stimulates translation initiation and protein synthesis in part through activation of the ribosomal protein S6 protein kinase S6K1 as well as through enhanced association of eukaryotic initiation factor eIF4G with eIF4E, an event that promotes binding of mRNA to the ribosome. In contrast, insulin in combination with resistance exercise stimulates translation initiation and protein synthesis through enhanced activity of a guanine nucleotide exchange protein referred to as eIF2B. In both cases, the amount of insulin required for the effects is low, and a concentration of the hormone that approximates that observed in fasting animals is sufficient for maximal stimulation. This review summarizes the results of a number of recent studies that have helped to establish our present understanding of the interactions of insulin, amino acids, and exercise in the regulation of protein synthesis in skeletal muscle.


2012 ◽  
Vol 39 (9) ◽  
pp. 717 ◽  
Author(s):  
Tracey M. Immanuel ◽  
David R. Greenwood ◽  
Robin M. MacDiarmid

Eukaryotic cells must cope with environmental stress. One type of general stress response is the downregulation of protein synthesis in order to conserve cellular resources. Protein synthesis is mainly regulated at the level of mRNA translation initiation and when the α subunit of eukaryotic translation initiation factor 2 (eIF2) is phosphorylated, protein synthesis is downregulated. Although eIF2 has the same translation initiation function in all eukaryotes, it is not known whether plants downregulate protein synthesis via eIF2α phosphorylation. Similarly, although there is evidence that plants possess eIF2α kinases, it is not known whether they operate in a similar manner to the well characterised mammalian and yeast eIF2α kinases. Two types of eIF2α kinases have been reported in plants, yet the full understanding of the plant eIF2α phosphorylation mechanism is still lacking. Here we review the current knowledge of the eIF2α phosphorylation mechanism within plants and discuss plant eIF2α, plant eIF2α kinase GCN2 and the data supporting and contradicting the hypothesis that a functional orthologue for the eIF2α kinase PKR, is present and functional in plants.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Manasvi Verma ◽  
Junhong Choi ◽  
Kyle A. Cottrell ◽  
Zeno Lavagnino ◽  
Erica N. Thomas ◽  
...  

AbstractTranslation initiation is a major rate-limiting step for protein synthesis. However, recent studies strongly suggest that the efficiency of protein synthesis is additionally regulated by multiple factors that impact the elongation phase. To assess the influence of early elongation on protein synthesis, we employed a library of more than 250,000 reporters combined with in vitro and in vivo protein expression assays. Here we report that the identity of the amino acids encoded by codons 3 to 5 impact protein yield. This effect is independent of tRNA abundance, translation initiation efficiency, or overall mRNA structure. Single-molecule measurements of translation kinetics revealed pausing of the ribosome and aborted protein synthesis on codons 4 and 5 of distinct amino acid and nucleotide compositions. Finally, introduction of preferred sequence motifs only at specific codon positions improves protein synthesis efficiency for recombinant proteins. Collectively, our data underscore the critical role of early elongation events in translational control of gene expression.


2021 ◽  
Vol 14 (668) ◽  
pp. eabc5429
Author(s):  
Mauricio M. Oliveira ◽  
Mychael V. Lourenco ◽  
Francesco Longo ◽  
Nicole P. Kasica ◽  
Wenzhong Yang ◽  
...  

Neuronal protein synthesis is essential for long-term memory consolidation, and its dysregulation is implicated in various neurodegenerative disorders, including Alzheimer’s disease (AD). Cellular stress triggers the activation of protein kinases that converge on the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), which attenuates mRNA translation. This translational inhibition is one aspect of the integrated stress response (ISR). We found that postmortem brain tissue from AD patients showed increased phosphorylation of eIF2α and reduced abundance of eIF2B, another key component of the translation initiation complex. Systemic administration of the small-molecule compound ISRIB (which blocks the ISR downstream of phosphorylated eIF2α) rescued protein synthesis in the hippocampus, measures of synaptic plasticity, and performance on memory-associated behavior tests in wild-type mice cotreated with salubrinal (which inhibits translation by inducing eIF2α phosphorylation) and in both β-amyloid-treated and transgenic AD model mice. Thus, attenuating the ISR downstream of phosphorylated eIF2α may restore hippocampal protein synthesis and delay cognitive decline in AD patients.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Godfrey Grech ◽  
Marieke von Lindern

Organisation of RNAs into functional subgroups that are translated in response to extrinsic and intrinsic factors underlines a relatively unexplored gene expression modulation that drives cell fate in the same manner as regulation of the transcriptome by transcription factors. Recent studies on the molecular mechanisms of inflammatory responses and haematological disorders indicate clearly that the regulation of mRNA translation at the level of translation initiation, mRNA stability, and protein isoform synthesis is implicated in the tight regulation of gene expression. This paper outlines how these posttranscriptional control mechanisms, including control at the level of translation initiation factors and the role of RNA binding proteins, affect hematopoiesis. The clinical relevance of these mechanisms in haematological disorders indicates clearly the potential therapeutic implications and the need of molecular tools that allow measurement at the level of translational control. Although the importance of miRNAs in translation control is well recognised and studied extensively, this paper will exclude detailed account of this level of control.


1999 ◽  
Vol 342 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Shinya SATOH ◽  
Makoto HIJIKATA ◽  
Hiroshi HANDA ◽  
Kunitada SHIMOTOHNO

Eukaryotic translation initiation factor 2α (eIF-2α), a target molecule of the interferon-inducible double-stranded-RNA-dependent protein kinase (PKR), was cleaved in apoptotic Saos-2 cells on treatment with poly(I)˙poly(C) or tumour necrosis factor α. This cleavage occurred with a time course similar to that of poly(ADP-ribose) polymerase, a well-known caspase substrate. In addition, eIF-2α was cleaved by recombinant active caspase-3 in vitro. By site-directed mutagenesis, the cleavage site was mapped to an Ala-Glu-Val-Asp300 ↓ Gly301 sequence located in the C-terminal portion of eIF-2α. PKR phosphorylates eIF-2α on Ser51, resulting in the suppression of protein synthesis. PKR-mediated translational suppression was repressed when the C-terminally cleaved product of eIF-2α was overexpressed in Saos-2 cells, even though PKR can phosphorylate this cleaved product. These results suggest that caspase-3 or related protease(s) can modulate the efficiency of protein synthesis by cleaving the α subunit of eIF-2, a key component in the initiation of translation.


Sign in / Sign up

Export Citation Format

Share Document