scholarly journals Novel single skeletal muscle fiber analysis reveals a fiber type-selective effect of acute exercise on glucose uptake

2016 ◽  
Vol 311 (5) ◽  
pp. E818-E824 ◽  
Author(s):  
Gregory D. Cartee ◽  
Edward B. Arias ◽  
Carmen S. Yu ◽  
Mark W. Pataky

One exercise session can induce subsequently elevated insulin sensitivity that is largely attributable to greater insulin-stimulated glucose uptake by skeletal muscle. Because skeletal muscle is a heterogeneous tissue comprised of diverse fiber types, our primary aim was to determine exercise effects on insulin-independent and insulin-dependent glucose uptake by single fibers of different fiber types. We hypothesized that each fiber type featuring elevated insulin-independent glucose uptake immediately postexercise (IPEX) would be characterized by increased insulin-dependent glucose uptake at 3.5 h postexercise (3.5hPEX). Rat epitrochlearis muscles were isolated and incubated with 2-[3H]deoxyglucose. Muscles from IPEX and sedentary (SED) controls were incubated without insulin. Muscles from 3.5hPEX and SED controls were incubated ± insulin. Glucose uptake (2-[3H]deoxyglucose accumulation) and fiber type (myosin heavy chain isoform expression) were determined for single fibers dissected from the muscles. Major new findings included the following: 1) insulin-independent glucose uptake was increased IPEX in single fibers of each fiber type (types I, IIA, IIB, IIBX, and IIX), 2) glucose uptake values from insulin-stimulated type I and IIA fibers exceeded the values for the other fiber types, 3) insulin-stimulated glucose uptake for type IIX exceeded IIB fibers, and 4) the 3.5hPEX group vs. SED had greater insulin-stimulated glucose uptake in type I, IIA, IIB, and IIBX but not type IIX fibers. Insulin-dependent glucose uptake was increased at 3.5hPEX in each fiber type except for IIX fibers, although insulin-independent glucose uptake was increased IPEX in all fiber types (including type IIX). Single fiber analysis enabled the discovery of this fiber type-related difference for postexercise, insulin-stimulated glucose uptake.

2019 ◽  
Vol 316 (5) ◽  
pp. E695-E706 ◽  
Author(s):  
Mark W. Pataky ◽  
Carmen S. Yu ◽  
Yilin Nie ◽  
Edward B. Arias ◽  
Manak Singh ◽  
...  

Insulin-stimulated glucose uptake (GU) by skeletal muscle is enhanced several hours after acute exercise in rats with normal or reduced insulin sensitivity. Skeletal muscle is composed of multiple fiber types, but exercise’s effect on fiber type-specific insulin-stimulated GU in insulin-resistant muscle was previously unknown. Male rats were fed a high-fat diet (HFD; 2 wk) and were either sedentary (SED) or exercised (2-h exercise). Other, low-fat diet-fed (LFD) rats remained SED. Rats were studied immediately postexercise (IPEX) or 3 h postexercise (3hPEX). Epitrochlearis muscles from IPEX rats were incubated in 2-deoxy-[3H]glucose (2-[3H]DG) without insulin. Epitrochlearis muscles from 3hPEX rats were incubated with 2-[3H]DG ± 100 µU/ml insulin. After single fiber isolation, GU and fiber type were determined. Glycogen and lipid droplets (LDs) were assessed histochemically. GLUT4 abundance was determined by immunoblotting. In HFD-SED vs. LFD-SED rats, insulin-stimulated GU was decreased in type IIB, IIX, IIAX, and IIBX fibers. Insulin-independent GU IPEX was increased and glycogen content was decreased in all fiber types (types I, IIA, IIB, IIX, IIAX, and IIBX). Exercise by HFD-fed rats enhanced insulin-stimulated GU in all fiber types except type I. Single fiber analyses enabled discovery of striking fiber type-specific differences in HFD and exercise effects on insulin-stimulated GU. The fiber type-specific differences in insulin-stimulated GU postexercise in insulin-resistant muscle were not attributable to a lack of fiber recruitment, as indirectly evidenced by insulin-independent GU and glycogen IPEX, differences in multiple LD indexes, or altered GLUT4 abundance, implicating fiber type-selective differences in the cellular processes responsible for postexercise enhancement of insulin-mediated GLUT4 translocation.


2015 ◽  
Vol 308 (3) ◽  
pp. E223-E230 ◽  
Author(s):  
Carlos M. Castorena ◽  
Edward B. Arias ◽  
Naveen Sharma ◽  
Jonathan S. Bogan ◽  
Gregory D. Cartee

To fully understand skeletal muscle at the cellular level, it is essential to evaluate single muscle fibers. Accordingly, the major goals of this study were to determine if there are fiber type-related differences in single fibers from rat skeletal muscle for: 1) contraction-stimulated glucose uptake and/or 2) the abundance of GLUT4 and other metabolically relevant proteins. Paired epitrochlearis muscles isolated from Wistar rats were either electrically stimulated to contract (E-Stim) or remained resting (No E-Stim). Single fibers isolated from muscles incubated with 2-deoxy-d-[3H]glucose (2-DG) were used to determine fiber type [myosin heavy chain (MHC) isoform protein expression], 2-DG uptake, and abundance of metabolically relevant proteins, including the GLUT4 glucose transporter. E-Stim, relative to No E-Stim, fibers had greater ( P < 0.05) 2-DG uptake for each of the isolated fiber types (MHC-IIa, MHC-IIax, MHC-IIx, MHC-IIxb, and MHC-IIb). However, 2-DG uptake for E-Stim fibers was not significantly different among these five fiber types. GLUT4, tethering protein containing a UBX domain for GLUT4 (TUG), cytochrome c oxidase IV (COX IV), and filamin C protein levels were significantly greater ( P < 0.05) in MHC-IIa vs. MHC-IIx, MHC-IIxb, or MHC-IIb fibers. TUG and COX IV in either MHC-IIax or MHC-IIx fibers exceeded values for MHC-IIxb or MHC-IIb fibers. GLUT4 levels for MHC-IIax fibers exceeded MHC-IIxb fibers. GLUT4, COX IV, filamin C, and TUG abundance in single fibers was significantly ( P < 0.05) correlated with each other. Differences in GLUT4 abundance among the fiber types were not accompanied by significant differences in contraction-stimulated glucose uptake.


2012 ◽  
Vol 22 (4) ◽  
pp. 292-303 ◽  
Author(s):  
Ildus I. Ahmetov ◽  
Olga L. Vinogradova ◽  
Alun G. Williams

The ability to perform aerobic or anaerobic exercise varies widely among individuals, partially depending on their muscle-fiber composition. Variability in the proportion of skeletal-muscle fiber types may also explain marked differences in aspects of certain chronic disease states including obesity, insulin resistance, and hypertension. In untrained individuals, the proportion of slow-twitch (Type I) fibers in the vastus lateralis muscle is typically around 50% (range 5–90%), and it is unusual for them to undergo conversion to fast-twitch fibers. It has been suggested that the genetic component for the observed variability in the proportion of Type I fibers in human muscles is on the order of 40–50%, indicating that muscle fiber-type composition is determined by both genotype and environment. This article briefly reviews current progress in the understanding of genetic determinism of fiber-type proportion in human skeletal muscle. Several polymorphisms of genes involved in the calcineurin–NFAT pathway, mitochondrial biogenesis, glucose and lipid metabolism, cytoskeletal function, hypoxia and angiogenesis, and circulatory homeostasis have been associated with fiber-type composition. As muscle is a major contributor to metabolism and physical strength and can readily adapt, it is not surprising that many of these gene variants have been associated with physical performance and athlete status, as well as metabolic and cardiovascular diseases. Genetic variants associated with fiber-type proportions have important implications for our understanding of muscle function in both health and disease.


2003 ◽  
Vol 284 (3) ◽  
pp. E541-E548 ◽  
Author(s):  
Hilary Ann Petersen ◽  
Patrick T. Fueger ◽  
Deanna P. Bracy ◽  
David H. Wasserman ◽  
Amy E. Halseth

The aim of this study was to determine barriers limiting muscle glucose uptake (MGU) during increased glucose flux created by raising blood glucose in the presence of fixed insulin. The determinants of the maximal velocity ( V max) of MGU in muscles of different fiber types were defined. Conscious rats were studied during a 4 mU · kg−1 · min−1insulin clamp with plasma glucose at 2.5, 5.5, and 8.5 mM. [U-14C]mannitol and 3- O-methyl-[3H]glucose ([3H]MG) were infused to steady-state levels ( t = −180 to 0 min). These isotope infusions were continued from 0 to 40 min with the addition of a 2-deoxy-[3H]glucose ([3H]DG) infusion. Muscles were excised at t = 40 min. Glucose metabolic index (Rg) was calculated from muscle-phosphorylated [3H]DG. [U-14C]mannitol was used to determine extracellular (EC) H2O. Glucose at the outer ([G]om) and inner ([G]im) sarcolemmal surfaces was determined by the ratio of [3H]MG in intracellular to EC H2O and muscle glucose. Rg was comparable at the two higher glucose concentrations, suggesting that rates of uptake near V max were reached. In summary, by defining the relationship of arterial glucose to [G]om and [G]im in the presence of fixed hyperinsulinemia, it is concluded that 1) V max for MGU is limited by extracellular and intracellular barriers in type I fibers, as the sarcolemma is freely permeable to glucose; 2) V max is limited in muscles with predominantly type IIb fibers by extracellular resistance and transport resistance; and 3) limits to Rg are determined by resistance at multiple steps and are better defined by distributed control rather than by a single rate-limiting step.


Antioxidants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 57 ◽  
Author(s):  
Juliana Osório Alves ◽  
Leonardo Matta Pereira ◽  
Igor Cabral Coutinho do Rêgo Monteiro ◽  
Luiz Henrique Pontes dos Santos ◽  
Alex Soares Marreiros Ferraz ◽  
...  

The enzymatic complex Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase (NOx) may be the principal source of reactive oxygen species (ROS). The NOX2 and NOX4 isoforms are tissue-dependent and are differentially expressed in slow-twitch fibers (type I fibers) and fast-twitch fibers (type II fibers) of skeletal muscle, making them different markers of ROS metabolism induced by physical exercise. The aim of this study was to investigate NOx signaling, as a non-adaptive and non-cumulative response, in the predominant fiber types of rat skeletal muscles 24 h after one strenuous treadmill exercise session. The levels of mRNA, reduced glycogen, thiol content, NOx, superoxide dismutase, catalase, glutathione peroxidase activity, and PPARGC1α and SLC2A4 gene expression were measured in the white gastrocnemius (WG) portion, the red gastrocnemius (RG) portion, and the soleus muscle (SOL). NOx activity showed higher values in the SOL muscle compared to the RG and WG portions. The same was true of the NOX2 and NOX4 mRNA levels, antioxidant enzymatic activities, glycogen content. Twenty-four hours after the strenuous exercise session, NOx expression increased in slow-twitch oxidative fibers. The acute strenuous exercise condition showed an attenuation of oxidative stress and an upregulation of antioxidant activity through PPARGC1α gene activity, antioxidant defense adaptations, and differential gene expression according to the predominant fiber type. The most prominent location of detoxification (indicated by NOX4 activation) in the slow-twitch oxidative SOL muscle was the mitochondria, while the fast-twitch oxidative RG portion showed a more cytosolic location. Glycolytic metabolism in the WG portion suggested possible NOX2/NOX4 non-regulation, indicating other possible ROS regulation pathways.


2007 ◽  
Vol 103 (6) ◽  
pp. 2105-2111 ◽  
Author(s):  
A. R. Tupling ◽  
E. Bombardier ◽  
R. D. Stewart ◽  
C. Vigna ◽  
A. E. Aqui

To investigate the time course of fiber type-specific heat shock protein 70 (Hsp70) expression in human skeletal muscle after acute exercise, 10 untrained male volunteers performed single-legged isometric knee extensor exercise at 60% of their maximal voluntary contraction (MVC) with a 50% duty cycle (5-s contraction and 5-s relaxation) for 30 min. Muscle biopsies were collected from the vastus lateralis before (Pre) exercise in the rested control leg (C) and immediately after exercise (Post) in the exercised leg (E) only and on recovery days 1 (R1), 2 (R2), 3 (R3), and 6 (R6) from both legs. As demonstrated by Western blot analysis, whole muscle Hsp70 content was unchanged ( P > 0.05) immediately after exercise (Pre vs. Post), was increased ( P < 0.05) by ∼43% at R1, and remained elevated throughout the entire recovery period in E only. Hsp70 expression was also assessed in individual muscle fiber types I, IIA, and IIAX/IIX by immunohistochemistry. There were no fiber type differences ( P > 0.05) in basal Hsp70 expression. Immediately after exercise, Hsp70 expression was increased ( P < 0.05) in type I fibers by ∼87% but was unchanged ( P > 0.05) in type II fibers (Pre vs. Post). At R1 and throughout recovery, Hsp70 content in E was increased above basal levels ( P < 0.05) in all fiber types, but Hsp70 expression was always highest ( P < 0.05) in type I fibers. Hsp70 content in C was not different from Pre at any time throughout recovery. Glycogen depletion was observed at Post in all type II, but not type I, fibers, suggesting that the fiber type differences in exercise-induced Hsp70 expression were not related to glycogen availability. These results demonstrate that the time course of exercise-induced Hsp70 expression in human skeletal muscle is fiber type specific.


Proteomes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 28
Author(s):  
Britta Eggers ◽  
Karin Schork ◽  
Michael Turewicz ◽  
Katalin Barkovits ◽  
Martin Eisenacher ◽  
...  

Skeletal muscle is a heterogeneous tissue consisting of blood vessels, connective tissue, and muscle fibers. The last are highly adaptive and can change their molecular composition depending on external and internal factors, such as exercise, age, and disease. Thus, examination of the skeletal muscles at the fiber type level is essential to detect potential alterations. Therefore, we established a protocol in which myosin heavy chain isoform immunolabeled muscle fibers were laser microdissected and separately investigated by mass spectrometry to develop advanced proteomic profiles of all murine skeletal muscle fiber types. All data are available via ProteomeXchange with the identifier PXD025359. Our in-depth mass spectrometric analysis revealed unique fiber type protein profiles, confirming fiber type-specific metabolic properties and revealing a more versatile function of type IIx fibers. Furthermore, we found that multiple myopathy-associated proteins were enriched in type I and IIa fibers. To further optimize the assignment of fiber types based on the protein profile, we developed a hypothesis-free machine-learning approach, identified a discriminative peptide panel, and confirmed our panel using a public data set.


2006 ◽  
Vol 290 (6) ◽  
pp. E1245-E1252 ◽  
Author(s):  
René Koopman ◽  
Antoine H. G. Zorenc ◽  
Rudy J. J. Gransier ◽  
David Cameron-Smith ◽  
Luc J. C. van Loon

To investigate the in vivo effects of resistance exercise on translational control in human skeletal muscle, we determined the phosphorylation of AMP-activated kinase (AMPK), eukaryotic initiation factor 4E-binding protein (4E-BP1), p70/p85-S6 protein kinase (S6K1), and ribosomal S6 protein (S6). Furthermore, we investigated whether changes in the phosphorylation of S6K1 are muscle fiber type specific. Eight male subjects performed a single high-intensity resistance exercise session. Muscle biopsies were collected before and immediately after exercise and after 30 and 120 min of postexercise recovery. The phosphorylation statuses of AMPK, 4E-BP1, S6K1, and S6 were determined by Western blotting with phospho-specific and pan antibodies. To determine fiber type-specific changes in the phosphorylation status of S6K1, immunofluorescence microscopy was applied. AMPK phosphorylation was increased approximately threefold immediately after resistance exercise, whereas 4E-BP1 phosphorylation was reduced to 27 ± 6% of preexercise values. Phosphorylation of S6K1 at Thr421/Ser424 was increased 2- to 2.5-fold during recovery but did not induce a significant change in S6 phosphorylation. Phosphorylation of S6K1 was more pronounced in the type II vs. type I muscle fibers. Before exercise, phosphorylated S6K1 was predominantly located in the nuclei. After 2 h of postexercise recovery, phospho-S6K1 was primarily located in the cytosol of type II muscle fibers. We conclude that resistance exercise effectively increases the phosphorylation of S6K1 on Thr421/Ser424, which is not associated with a substantial increase in S6 phosphorylation in a fasted state.


2011 ◽  
Vol 300 (3) ◽  
pp. R531-R543 ◽  
Author(s):  
Elliott M. McMillan ◽  
Joe Quadrilatero

Increased skeletal muscle apoptosis has been associated with a number of conditions including aging, disuse, and cardiovascular disease. Skeletal muscle is a complex tissue comprised of several fiber types with unique properties. To date, no report has specifically examined apoptotic differences across muscles or fiber types. Therefore, we measured several apoptotic indices in healthy rat red (RG) and white gastrocnemius (WG) muscle, as well as examined the expression of several key proteins across fiber types in a mixed muscle (mixed gastrocnemius). The protein content of apoptosis-inducing factor (AIF), apoptosis repressor with caspase recruitment domain (ARC), Bax, Bcl-2, cytochrome c, heat shock protein 70 (Hsp70), and second mitochondria-derived activator of caspases (Smac) were significantly ( P < 0.05) higher in RG vs. WG muscle. Cytosolic AIF, cytochrome c, and Smac as well as nuclear AIF were also significantly ( P < 0.05) higher in RG compared with WG muscle. In addition, ARC protein expression was related to muscle fiber type and found to be highest ( P < 0.001) in type I fibers. Similarly, AIF protein expression was differentially expressed across fibers; however, AIF was correlated to oxidative potential ( P < 0.001). Caspase-3, -8, and -9 activity, calpain activity, and DNA fragmentation (a hallmark of apoptosis) were also significantly higher ( P < 0.05) in RG compared with WG muscle. Furthermore, total muscle reactive oxygen species generation, as well as Ca2+-induced permeability transition pore opening and loss of membrane potential in isolated mitochondria were greater in RG muscle. Collectively, these data suggest that a number of apoptosis-related indices differ between muscles and fiber types. Given these findings, muscle and fiber-type differences in apoptotic protein expression, signaling, and susceptibility should be considered when studying cell death processes in skeletal muscle.


2003 ◽  
Vol 285 (5) ◽  
pp. R1086-R1090 ◽  
Author(s):  
Jascha D. Parkington ◽  
Adam P. Siebert ◽  
Nathan K. LeBrasseur ◽  
Roger A. Fielding

The cellular mechanisms by which contractile activity stimulates skeletal muscle hypertrophy are beginning to be elucidated and appear to include activation of the phosphatidylinositol 3-kinase signaling substrate mammalian target of rapamycin (mTOR). We examined the time course and location of mTOR phosphorylation in response to an acute bout of contractile activity. Rat hindlimb muscle contractile activity was elicited by high-frequency electrical stimulation (HFES) of the sciatic nerve. Plantaris (Pla), tibialis anterior (TA), and soleus (Sol) muscles from stimulated and control limbs were collected immediately or 6 h after stimulation. HFES resulted in mTOR phosphorylation immediately after (3.4 ± 0.9-fold, P < 0.01) contractile activity in Pla, whereas TA was unchanged compared with controls. mTOR phosphorylation remained elevated in Pla (3.6 ± 0.6-fold) and increased in TA (4.6 ± 0.9-fold, P < 0.05) 6 h after HFES. Interestingly, mTOR activation occurred predominantly in fibers expressing type IIa but not type I myosin heavy chain isoform. Furthermore, HFES induced modest ribosomal protein S6 kinase phosphorylation immediately after exercise in Pla (0.4 ± 0.1-fold, P < 0.05) but not TA and more markedly 6 h after in both Pla and TA (1.4 ± 0.4-fold vs. 2.4 ± 0.3-fold, respectively, P < 0.01). Akt/PKB phosphorylation was similar to controls at both time points. These results suggest that mTOR signaling is increased after a single bout of muscle contractile activity. Despite reports that mTOR is activated downstream of Akt/PKB, in this study, HFES induced mTOR signaling independent of Akt/PKB phosphorylation. Fiber type-dependent mTOR phosphorylation may be a molecular basis by which some fiber types are more susceptible to contraction-induced hypertrophy.


Sign in / Sign up

Export Citation Format

Share Document