scholarly journals Toll-like receptor 4 modulates skeletal muscle substrate metabolism

2010 ◽  
Vol 298 (5) ◽  
pp. E988-E998 ◽  
Author(s):  
Madlyn I. Frisard ◽  
Ryan P. McMillan ◽  
Julie Marchand ◽  
Kristin A. Wahlberg ◽  
Yaru Wu ◽  
...  

Toll-like receptor 4 (TLR4), a protein integral to innate immunity, is elevated in skeletal muscle of obese and type 2 diabetic humans and has been implicated in the development of lipid-induced insulin resistance. The purpose of this study was to examine the role of TLR4 as a modulator of basal (non-insulin-stimulated) substrate metabolism in skeletal muscle with the hypothesis that its activation would result in reduced fatty acid oxidation and increased partitioning of fatty acids toward neutral lipid storage. Human skeletal muscle, rodent skeletal muscle, and skeletal muscle cell cultures were employed to study the functional consequences of TLR4 activation on glucose and fatty acid metabolism. Herein, we demonstrate that activation of TLR4 with low (metabolic endotoxemia) and high (septic conditions) doses of LPS results in increased glucose utilization and reduced fatty acid oxidation in skeletal muscle and that these changes in metabolism in vivo occur in concert with increased circulating triglycerides. Moreover, animals with a loss of TLR4 function possess increased oxidative capacity in skeletal muscle and present with lower fasting levels of triglycerides and nonesterified free fatty acids. Evidence is also presented to suggest that these changes in substrate metabolism under metabolic endotoxemic conditions are independent of skeletal muscle-derived proinflammatory cytokine production. This report illustrates that skeletal muscle is a target for circulating endotoxin and may provide critical insight into the link between a proinflammatory state and dysregulated metabolism as observed with obesity, type 2 diabetes, and metabolic syndrome.

2018 ◽  
Vol 46 (1) ◽  
pp. 187-202 ◽  
Author(s):  
Jaume Amengual ◽  
Francisco J. García-Carrizo ◽  
Andrea Arreguín ◽  
Hana Mušinović ◽  
Nuria Granados ◽  
...  

Background/Aims: All-trans retinoic acid (ATRA) has protective effects against obesity and metabolic syndrome. We here aimed to gain further insight into the interaction of ATRA with skeletal muscle metabolism and secretory activity as important players in metabolic health. Methods: Cultured murine C2C12 myocytes were used to study direct effects of ATRA on cellular fatty acid oxidation (FAO) rate (using radioactively-labelled palmitate), glucose uptake (using radioactively-labelled 2-deoxy-D-glucose), triacylglycerol levels (by an enzymatic method), and the expression of genes related to FAO and glucose utilization (by RT-real time PCR). We also studied selected myokine production (using ELISA and immunohistochemistry) in ATRA-treated myocytes and intact mice. Results: Exposure of C2C12 myocytes to ATRA led to increased fatty acid consumption and decreased cellular triacylglycerol levels without affecting glucose uptake, and induced the expression of the myokine irisin at the mRNA and secreted protein level in a dose-response manner. ATRA stimulatory effects on FAO-related genes and the Fndc5 gene (encoding irisin) were reproduced by agonists of peroxisome proliferator-activated receptor β/δ and retinoid X receptors, but not of retinoic acid receptors, and were partially blocked by an AMP-dependent protein kinase inhibitor. Circulating irisin levels were increased by 5-fold in ATRA-treated mice, linked to increased Fndc5 transcription in liver and adipose tissues, rather than skeletal muscle. Immunohistochemistry analysis of FNDC5 suggested that ATRA treatment enhances the release of FNDC5/irisin from skeletal muscle and the liver and its accumulation in interscapular brown and inguinal white adipose depots. Conclusion: These results provide new mechanistic insights on how ATRA globally stimulates FAO and enhances irisin secretion, thereby contributing to leaning effects and improved metabolic status.


1975 ◽  
Vol 229 (4) ◽  
pp. 885-889 ◽  
Author(s):  
Crass MF ◽  
GM Pieper

The metabolism of cardiac lipids and glycogen in hypoxic and well-oxygenated perfused rat hearts was studied in the presence or absence of epinephrine. Heart lipids were pre-labeled in vivo with [1-14C]palmitate. Triglyceride disappearance (measured chemically and radiochemically) was observed in well-oxygenated hearts and was stimulated by epinephrine (4.1 X 10(-7)M). Utilization of tissue triglycerides was inhibited in hypoxic hearts in the presence or absence of added epinephrine. Hypoxia resulted in a small increase in tissue 14C-free fatty acids and inhibition of 14C-labeled triglyceride fatty acid oxidation. Epinephrine had no stimulatory effect on fatty acid oxidation in hypoxic hearts. Utilization of 14C-labeled phospholipids (and total phospholipids) was similar in well-oxygenated and hypoxic hearts with or without added epinephrine. These results suggested that the antilipolytic effects of hypoxia were predominant over the lipolytic effects of epinephrine. Glycogenolysis was stimulated threefold by epinephrine in well-oxygenated hearts. Hypoxia alone was a potent stimulus to glycogenolysis. Addition of epinephrine to perfusates of hypoxic hearts resulted in a slight enhancement of glycogenolysis.


1958 ◽  
Vol 194 (2) ◽  
pp. 379-386 ◽  
Author(s):  
Irving B. Fritz ◽  
Don G. Davis ◽  
Robert H. Holtrop ◽  
Harold Dundee

The metabolism of C14-labeled acetate, octanoate and palmitate by isolated skeletal muscle (latissimus dorsi and diaphragm) from normal, fed rats has been examined. The rates at which these substrates were converted to C14O2 have been shown to vary with concentration, temperature, functional state of the muscle, and the presence of albumin. Increased concentration of fatty acids led to enhanced conversion of substrate to C14O2. Electrical stimulation of muscles under tension resulted in approximately a 60% increase in oxygen consumption and about a 100% rise in fatty acid oxidation. The addition of glucose did not alter the rate of fatty acid metabolism by muscle. The addition of bovine albumin at concentrations up to approximately 1 µm albumin/7 µm palmitate resulted in augmented palmitic acid oxidation. However, at concentrations of albumin greater than 1 µm albumin/7 µm palmitate, palmitic acid degradation by resting diaphragm was inhibited, suggesting a firmer binding of fatty acid to albumin. The Q10 for palmitic acid oxidation by resting diaphragm was 2.23 in the absence of added albumin between 25° and 37°C. The data are discussed in relation to the present concepts of fat metabolism and transport in vivo. It is suggested that fat degradation in isolated muscle may provide an energy source during activity.


2009 ◽  
Vol 296 (3) ◽  
pp. E497-E502 ◽  
Author(s):  
A. Lombardi ◽  
P. de Lange ◽  
E. Silvestri ◽  
R. A. Busiello ◽  
A. Lanni ◽  
...  

Triiodothyronine regulates energy metabolism and thermogenesis. Among triiodothyronine derivatives, 3,5-diiodo-l-thyronine (T2) has been shown to exert marked effects on energy metabolism by acting mainly at the mitochondrial level. Here we investigated the capacity of T2 to affect both skeletal muscle mitochondrial substrate oxidation and thermogenesis within 1 h after its injection into hypothyroid rats. Administration of T2 induced an increase in mitochondrial oxidation when palmitoyl-CoA (+104%), palmitoylcarnitine (+80%), or succinate (+30%) was used as substrate, but it had no effect when pyruvate was used. T2 was able to 1) activate the AMPK-ACC-malonyl-CoA metabolic signaling pathway known to direct lipid partitioning toward oxidation and 2) increase the importing of fatty acids into the mitochondrion. These results suggest that T2 stimulates mitochondrial fatty acid oxidation by activating several metabolic pathways, such as the fatty acid import/β-oxidation cycle/FADH2-linked respiratory pathways, where fatty acids are imported. T2 also enhanced skeletal muscle mitochondrial thermogenesis by activating pathways involved in the dissipation of the proton-motive force not associated with ATP synthesis (“proton leak”), the effect being dependent on the presence of free fatty acids inside mitochondria. We conclude that skeletal muscle is a target for T2, and we propose that, by activating processes able to enhance mitochondrial fatty acid oxidation and thermogenesis, T2 could play a role in protecting skeletal muscle against excessive intramyocellular lipid storage, possibly allowing it to avoid functional disorders.


2021 ◽  
Author(s):  
Norihiro Imai ◽  
Hayley T. Nicholls ◽  
Michele Alves-Bezerra ◽  
Yingxia Li ◽  
Anna A. Ivanova ◽  
...  

ABSTRACTThioesterase superfamily member 2 (Them2) is highly expressed in oxidative tissues where it hydrolyzes long chain fatty acyl-CoA esters to free fatty acids and CoA. Although mice globally lacking Them2 (Them2-/-) are protected against diet-induced obesity, insulin resistance and hepatic steatosis, liver-specific Them2-/- mice remain susceptible. To explore the contribution of Them2 in extrahepatic tissues, we created mice with Them2 deleted in skeletal muscle (S-Them2-/-), cardiac muscle (C-Them2-/-) or adipose tissue (A-Them2-/-). When fed a high-fat diet, S-Them2-/- but not C-Them2-/- or A-Them2-/- mice exhibited reduced weight gain. Only S-Them2-/- mice exhibited improved glucose homeostasis together with improved insulin sensitivity in skeletal muscle. Increased rates of fatty acid oxidation in skeletal muscle of S-Them2-/- mice were reflected in alterations in skeletal muscle metabolites, including short chain fatty acids, branched chain amino acids and the pentose phosphate pathway. Protection from diet-induced hepatic steatosis in S-Them2-/- mice was attributable to increased VLDL triglyceride secretion rates in support of demands of increased muscle fatty acid utilization. These results reveal a key role for skeletal muscle Them2 in the pathogenesis of diet-induced obesity, insulin resistance and hepatic steatosis.


1979 ◽  
Vol 182 (2) ◽  
pp. 593-598 ◽  
Author(s):  
P Ferré ◽  
J P Pégorier ◽  
D H Williamson ◽  
J Girard

Metabolic interactions between fatty acid oxidation and gluconeogenesis were investigated in vivo in 16h-old newborn rats under various nutritional states. As the newborn rat has no white adipose tissue, starvation from birth induces a low rate of hepatic fatty acid oxidation. Hepatic gluconeogenesis in inhibited in the starved newborn rat when compared with the suckling rat, which receives fatty acids through the milk, at the steps catalysed by pyruvate carboxylase and glyceraldehyde 3-phosphate dehydrogenase. These inhibitions are rapidly reversed by triacylglycerol feeding. Inhibition of fatty acid oxidation by pent-4-enoate in the suckling animal mimics the effect of starvation on the pattern of hepatic gluconeogenic metabolites. It is concluded that, in the newborn rat in vivo, hepatic fatty acids oxidation can increase the gluconeogenic flux by providing the acetyl-CoA necessary for the reaction catalysed by pyruvate carboxylase and the reducing equivalents (NADH) to displace the reversible reaction catalysed by glyceraldehyde 3-phosphate dehydrogenase in the direction of gluconeogenesis.


2008 ◽  
Vol 294 (5) ◽  
pp. E969-E977 ◽  
Author(s):  
Maja Stefanovic-Racic ◽  
German Perdomo ◽  
Benjamin S. Mantell ◽  
Ian J. Sipula ◽  
Nicholas F. Brown ◽  
...  

Nonalcoholic fatty liver disease (NAFLD), hypertriglyceridemia, and elevated free fatty acids are present in the majority of patients with metabolic syndrome and type 2 diabetes mellitus and are strongly associated with hepatic insulin resistance. In the current study, we tested the hypothesis that an increased rate of fatty acid oxidation in liver would prevent the potentially harmful effects of fatty acid elevation, including hepatic triglyceride (TG) accumulation and elevated TG secretion. Primary rat hepatocytes were transduced with adenovirus encoding carnitine palmitoyltransferase 1a (Adv-CPT-1a) or control adenoviruses encoding either β-galactosidase (Adv-β-gal) or carnitine palmitoyltransferase 2 (Adv-CPT-2). Overexpression of CPT-1a increased the rate of β-oxidation and ketogenesis by ∼70%, whereas esterification of exogenous fatty acids and de novo lipogenesis were unchanged. Importantly, CPT-1a overexpression was accompanied by a 35% reduction in TG accumulation and a 60% decrease in TG secretion by hepatocytes. There were no changes in secretion of apolipoprotein B (apoB), suggesting the synthesis of smaller, less atherogenic VLDL particles. To evaluate the effect of increasing hepatic CPT-1a activity in vivo, we injected lean or obese male rats with Adv-CPT-1a, Adv-β-gal, or Adv-CPT-2. Hepatic CPT-1a activity was increased by ∼46%, and the rate of fatty acid oxidation was increased by ∼44% in lean and ∼36% in obese CPT-1a-overexpressing animals compared with Adv-CPT-2- or Adv-β-gal-treated rats. Similar to observations in vitro, liver TG content was reduced by ∼37% (lean) and ∼69% (obese) by this in vivo intervention. We conclude that a moderate stimulation of fatty acid oxidation achieved by an increase in CPT-1a activity is sufficient to substantially reduce hepatic TG accumulation both in vitro and in vivo. Therefore, interventions that increase CPT-1a activity could have potential benefits in the treatment of NAFLD.


Endocrinology ◽  
2004 ◽  
Vol 145 (10) ◽  
pp. 4667-4676 ◽  
Author(s):  
Lisa Héron-Milhavet ◽  
Martin Haluzik ◽  
Shoshana Yakar ◽  
Oksana Gavrilova ◽  
Stephanie Pack ◽  
...  

Abstract Insulin resistance is one of the primary characteristics of type 2 diabetes. Mice overexpressing a dominant-negative IGF-I receptor specifically in muscle (MKR mice) demonstrate severe insulin resistance with high levels of serum and tissue lipids and eventually develop type 2 diabetes at 5–6 wk of age. To determine whether lipotoxicity plays a role in the progression of the disease, we crossed MKR mice with mice overexpressing a fatty acid translocase, CD36, in skeletal muscle. The double-transgenic MKR/CD36 mice showed normalization of the hyperglycemia and the hyperinsulinemia as well as a marked improvement in liver insulin sensitivity. The MKR/CD36 mice also exhibited normal rates of fatty acid oxidation in skeletal muscle when compared with the decreased rate of fatty acid oxidation in MKR. With the reduction in insulin resistance, β-cell function returned to normal. These and other results suggest that the insulin resistance in the MKR mice is associated with increased muscle triglycerides levels and that whole-body insulin resistance can be, at least partially, reversed in association with a reduction in muscle triglycerides levels, although the mechanisms are yet to be determined.


Sign in / Sign up

Export Citation Format

Share Document