ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue

2002 ◽  
Vol 283 (6) ◽  
pp. E1178-E1184 ◽  
Author(s):  
Takashi Miki ◽  
Kohtaro Minami ◽  
Li Zhang ◽  
Mizuo Morita ◽  
Tohru Gonoi ◽  
...  

ATP-sensitive potassium (KATP) channels are known to be critical in the control of both insulin and glucagon secretion, the major hormones in the maintenance of glucose homeostasis. The involvement of KATPchannels in glucose uptake in the target tissues of insulin, however, is not known. We show here that Kir6.2(−/−) mice lacking Kir6.2, the pore-forming subunit of these channels, have no KATPchannel activity in their skeletal muscles. A 2-deoxy-[3H]glucose uptake experiment in vivo showed that the basal and insulin-stimulated glucose uptake in skeletal muscles and adipose tissues of Kir6.2(−/−) mice is enhanced compared with that in wild-type (WT) mice. In addition, in vitro measurement of glucose uptake indicates that disruption of the channel increases the basal glucose uptake in Kir6.2(−/−) extensor digitorum longus and the insulin-stimulated glucose uptake in Kir6.2(−/−) soleus muscle. In contrast, glucose uptake in adipose tissue, measured in vitro, was similar in Kir6.2(−/−) and WT mice, suggesting that the increase in glucose uptake in Kir6.2(−/−) adipocytes is mediated by altered extracellular hormonal or neuronal signals altered by disruption of the KATP channels.

2006 ◽  
Vol 191 (1) ◽  
pp. 101-111 ◽  
Author(s):  
David J Flint ◽  
Nadine Binart ◽  
Stephanie Boumard ◽  
John J Kopchick ◽  
Paul Kelly

Direct metabolic effects of GH on adipose tissue are well established, but effects of prolactin (PRL) have been more controversial. Recent studies have demonstrated PRL receptors on adipocytes and effects of PRL on adipose tissue in vitro. The role of GH in adipocyte proliferation and differentiation is also controversial, since GH stimulates adipocyte differentiation in cell lines, whereas it stimulates proliferation but inhibits differentiation of adipocytes in primary cell culture. Using female gene disrupted (ko) mice, we showed that absence of PRL receptors (PRLRko) impaired development of both internal and s.c. adipose tissue, due to reduced numbers of adipocytes, an effect differing from that of reduced food intake, where cell volume is decreased. In contrast, GHRko mice exhibited major decreases in the number of internal adipocytes, whereas s.c. adipocyte numbers were increased, even though body weight was decreased by 40–50%. The changes in adipose tissue in PRLRko mice appeared to be entirely due to extrinsic factors since preadipocytes proliferated and differentiated in similar fashion to wild-type animals in vitro and their response to insulin and isoproterenol was similar to wild-type animals. This contrasted with GHRko mice, where s.c. adipocytes proliferated, differentiated, and responded to hormones in identical fashion to controls, whereas parametrial adipocytes exhibited markedly depressed proliferation and differentiation potential and failed to respond to insulin or noradrenaline. Our results provide in vivo evidence that both GH and PRL stimulate differentiation of adipocytes but that the effects of GH are site specific and induce intrinsic changes in the precursor population, which are retained in vitro.


1986 ◽  
Vol 250 (6) ◽  
pp. H1127-H1135
Author(s):  
S. E. Martin ◽  
E. L. Bockman

Intravenous norepinephrine increases glycerol release and blood flow in adipose tissue. The vasodilation may be an indirect effect of norepinephrine through the production of adenosine. Adenosine increases glucose uptake and inhibits lipolysis in vitro. To test whether adenosine regulates blood flow and/or metabolism in vivo, adenosine deaminase (ADA) was infused intra-arterially into the inguinal fat pads of anesthetized dogs. In unstimulated tissues, ADA (n = 7) significantly increased vascular resistance and significantly decreased glucose uptake compared with the effects of a control (boiled deaminase, n = 6) infusion. ADA completely blocked the norepinephrine-induced vasodilation (n = 6). No potentiation of basal or catecholamine-stimulated lipolysis was observed with ADA. The presence of ADA in the interstitial space was verified by analysis of lymph effluents. Interstitial levels of ADA were inversely correlated with the tissue contents of adenosine. These data support the hypothesis that adenosine is a regulator of blood flow in basal and stimulated adipose tissue. Adenosine also appears to regulate glucose uptake, but not lipolysis, in vivo.


Endocrinology ◽  
2016 ◽  
Vol 157 (1) ◽  
pp. 282-291 ◽  
Author(s):  
Naisi Li ◽  
Qiyuan Yang ◽  
Ryan G. Walker ◽  
Thomas B. Thompson ◽  
Min Du ◽  
...  

Abstract A potentially novel approach for treating obesity includes attenuating myostatin as this increases muscle mass and decreases fat mass. Notwithstanding, conflicting studies report that myostatin stimulates or inhibits adipogenesis and it is unknown whether reduced adiposity with myostatin attenuation results from changes in fat deposition or adipogenesis. We therefore quantified changes in the stem, transit amplifying and progenitor cell pool in white adipose tissue (WAT) and brown adipose tissue (BAT) using label-retaining wild-type and mstn−/− (Jekyll) mice. Muscle mass was larger in Jekyll mice, WAT and BAT mass was smaller and label induction was equal in all tissues from both wild-type and Jekyll mice. The number of label-retaining cells, however, dissipated quicker in WAT and BAT of Jekyll mice and was only 25% and 17%, respectively, of wild-type cell counts 1 month after induction. Adipose cell density was significantly higher in Jekyll mice and increased over time concomitant with label-retaining cell disappearance, which is consistent with enhanced expansion and differentiation of the stem, transit amplifying and progenitor pool. Stromal vascular cells from Jekyll WAT and BAT differentiated into mature adipocytes at a faster rate than wild-type cells and although Jekyll WAT cells also proliferated quicker in vitro, those from BAT did not. Differentiation marker expression in vitro, however, suggests that mstn−/− BAT preadipocytes are far more sensitive to the suppressive effects of myostatin. These results suggest that myostatin attenuation stimulates adipogenesis in vivo and that the reduced adiposity in mstn−/− animals results from nutrient partitioning away from fat and in support of muscle.


2010 ◽  
Vol 298 (3) ◽  
pp. E548-E554 ◽  
Author(s):  
Rickard Westergren ◽  
Daniel Nilsson ◽  
Mikael Heglind ◽  
Zahra Arani ◽  
Mats Grände ◽  
...  

Many members of the forkhead genes family of transcription factors have been implicated as important regulators of metabolism, in particular, glucose homeostasis, e.g., Foxo1, Foxa3, and Foxc2. The purpose of this study was to exploit the possibility that yet unknown members of this gene family play a role in regulating glucose tolerance in adipocytes. We identified Foxf2 in a screen for adipose-expressed forkhead genes. In vivo overexpression of Foxf2 in an adipose tissue-restricted fashion demonstrated that such mice display a significantly induced insulin secretion in response to an intravenous glucose load compared with wild-type littermates. In response to increased Foxf2 expression, insulin receptor substrate 1 (IRS1) mRNA and protein levels are significantly downregulated in adipocytes; however, the ratio of serine vs. tyrosine phosphorylation of IRS1 seems to remain unaffected. Furthermore, adipocytes overexpressing Foxf2 have a significantly lower insulin-mediated glucose uptake compared with wild-type adipocytes. These findings argue that Foxf2 is a previously unrecognized regulator of cellular and systemic whole body glucose tolerance, at least in part, due to lower levels of IRS1. Foxf2 and its downstream target genes can provide new insights with regard to identification of novel therapeutic targets.


1986 ◽  
Vol 250 (6) ◽  
pp. E669-E676 ◽  
Author(s):  
C. I. Edwards ◽  
R. J. Howland

Arginine-stimulated insulin and glucagon outputs from isolated perfused pancreata of warm-acclimated and 2-, 4-, and 6-wk cold-acclimated rats (4 degrees C) were determined to assess whether observed changes in these parameters were a result of cold exposure per se or a part of the adaptive process of cold acclimation. Progressive and sequential changes were seen in both insulin and glucagon outputs. At 2 wk cold acclimation, glucagon rose and insulin output tended to fall, at 4 wk, glucagon output remained elevated and insulin output was further reduced, and at 6 wk, glucagon output had returned to control levels, whereas insulin output was substantially further reduced. These changes resulted in reduction of the insulin-to-glucagon molar ratio of the total arginine-induced output from 7.27 +/- 1.76 (SE) in the warm acclimate to 2.31 +/- 0.79 (SE) at 2 wk, 1.42 +/- 0.29 (SE) at 4 wk, and 1.26 +/- 0.21 (SE) at 6 wk cold acclimation. The data do not provide in vitro support for the hypothesis that changes in pancreatic hormone secretion in vivo are a consequence of cold exposure and not cold acclimation.


2009 ◽  
Vol 296 (5) ◽  
pp. R1327-R1335 ◽  
Author(s):  
William T. Festuccia ◽  
Pierre-Gilles Blanchard ◽  
Véronique Turcotte ◽  
Mathieu Laplante ◽  
Meltem Sariahmetoglu ◽  
...  

We investigated the mechanisms whereby peroxisome proliferator-activated receptor-γ (PPARγ) agonism affects glucose and lipid metabolism in brown adipose tissue (BAT) by studying the impact of PPARγ activation on BAT glucose uptake and metabolism, lipogenesis, and mRNA levels plus activities of enzymes involved in triacylglycerol (TAG) synthesis. Interscapular BAT of rats treated or not with rosiglitazone (15 mg·kg−1·day−1, 7 days) was evaluated in vivo for glucose uptake and lipogenesis and in vitro for glucose metabolism, gene expression, and activities of glycerolphosphate acyltransferase (GPAT), phosphatidate phosphatase-1 (PAP or lipin-1), and diacylglycerol acyltransferase (DGAT). Rosiglitazone increased BAT mass without affecting whole tissue glucose uptake. BAT glycogen content (−80%), its synthesis from glucose (−50%), and mRNA levels of UDP-glucose pyrophosphorylase (−40%), which generates UDP-linked glucose for glycogen synthesis, were all reduced by rosiglitazone. In contrast, BAT TAG-glycerol synthesis in vivo and glucose incorporation into TAG-glycerol in vitro were stimulated by the agonist along with the activities and mRNA levels of glycerol 3-phosphate-generating phosphoenolpyruvate carboxykinase and glycerokinase. Furthermore, rosiglitazone markedly increased the activities of GPAT and DGAT but not those of lipin-1-mediated PAP-1, enzymes involved in the sequential acylation of glycerol 3-phosphate and TAG synthesis. Because an adequate supply of fatty acids is essential for BAT nonshivering thermogenesis, the enhanced ability of BAT to synthesize TAG under PPARγ activation may constitute an important mechanism by which lipid substrates are stored in preparation for an eventual thermogenic activation.


1996 ◽  
Vol 270 (3) ◽  
pp. R660-R666 ◽  
Author(s):  
T. A. Kotchen ◽  
H. Y. Zhang ◽  
S. Reddy ◽  
R. G. Hoffmann

Pioglitazone (a thiazolidinedione derivative) increases insulin sensitivity and prevents hypertension in the Dahl-salt-sensitive (S) rat. The present study was undertaken to determine if pioglitazone modulates pressor responsiveness to vasoactive agents, both in vivo and in vitro. In vivo, pretreatment with pioglitazone inhibited (P < 0.02) pressor responses to both norepinephrine and angiotensin II in conscious Dahl-S, but not in Sprague-Dawley rats. In vitro, pioglitazone augmented the capacity of insulin to inhibit pressor responses of strips of thoracic aortas to norepinephrine, but not to angiotensin. Additionally, in vitro, incubation with insulin plus pioglitazone augmented acetylcholine-induced, but not nitroprusside-induced vasodilation. Pioglitazone pretreatment increased (P < 0.001) in vitro insulin-stimulated glucose uptake in adipose tissue, but not in thoracic aortas of Dahl-S. We hypothesize that pioglitazone attenuates hypertension by modulating the effects of insulin on vascular function, resulting in both blunted vasoconstriction and augmented acetylcholine-induced vasodilation. These alterations are not accounted for by an effect of pioglitazone on glucose uptake by vascular smooth muscle.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Patrick Yue ◽  
Tomoko Asagami ◽  
Ramendra K Kundu ◽  
Yin-Gail Yee ◽  
Alexander J Glassford ◽  
...  

Background : Apelin, a peptide hormone with unique cardioactive properties, is also an adipokine, secreted by adipocytes in response to insulin. However, the overall effect of apelin on insulin sensitivity remains largely uncharacterized. Methods : For in vitro experiments, 3T3L1 cells were differentiated into adipocytes over 8 days, with apelin (1 microM) added daily to the media. Cells were then treated with insulin (100 nM; n = 5) for 30 minutes and incubated with 2-[ 3 H]-deoxyglucose. Glucose incorporation was then measured by scintillation counting. For in vivo experiments (n = 4 all studies), apelin-deficient (KO) mice were created by homologous recombination in embryonic stem cells. At age 7 weeks, insulin and glucose tolerance tests, as well as an enzyme immunosorbent assay for insulin, were performed after a 6-hour fast. The mice were then scanned by computed tomography using a GE eXplore RS MicroCT system, and visceral adipose content was determined with MicroView software. Upon sacrifice 1 week later, visceral adipocytes were isolated via collagenase digestion, exposed to insulin, and assessed for glucose uptake as above. Results : Because apelin is upregulated by insulin in adipocytes, we measured glucose uptake in differentiated 3T3L1 cells chronically dosed with apelin. Though no differences were observed in basal uptake, insulin-induced uptake was increased versus control (p < 0.05). To further investigate the role of apelin in vivo , we assessed for insulin resistance in apelin KO mice. At 8 weeks of age, apelin KOs were heavier than age-matched wild type controls (25 vs. 22 g; p < 0.05). Though fasting glucose levels were not significantly different between groups, insulin levels were increased in the KOs (895 vs. 477 pg/microL; p < 0.05). In addition, both insulin and glucose tolerance tests were significantly abnormal in the KOs compared to wild type. Moreover, visceral fat volume was greater in the KOs (274 vs. 248 mm 3 /g body weight; p < 0.05). Finally, insulin-stimulated uptake was reduced (p < 0.05). Conclusions : Apelin is necessary for the proper maintenance of glucose homeostasis. Furthermore, apelin potentiates insulin-induced glucose uptake in adipocytes, suggesting a possible mechanism for its insulin sensitizing effects.


Sign in / Sign up

Export Citation Format

Share Document