Abstract 1216: The Cardioactive Peptide Apelin Increases Adipocyte Glucose Uptake and is Necessary for the Maintenance of Systemic Insulin Sensitivity

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Patrick Yue ◽  
Tomoko Asagami ◽  
Ramendra K Kundu ◽  
Yin-Gail Yee ◽  
Alexander J Glassford ◽  
...  

Background : Apelin, a peptide hormone with unique cardioactive properties, is also an adipokine, secreted by adipocytes in response to insulin. However, the overall effect of apelin on insulin sensitivity remains largely uncharacterized. Methods : For in vitro experiments, 3T3L1 cells were differentiated into adipocytes over 8 days, with apelin (1 microM) added daily to the media. Cells were then treated with insulin (100 nM; n = 5) for 30 minutes and incubated with 2-[ 3 H]-deoxyglucose. Glucose incorporation was then measured by scintillation counting. For in vivo experiments (n = 4 all studies), apelin-deficient (KO) mice were created by homologous recombination in embryonic stem cells. At age 7 weeks, insulin and glucose tolerance tests, as well as an enzyme immunosorbent assay for insulin, were performed after a 6-hour fast. The mice were then scanned by computed tomography using a GE eXplore RS MicroCT system, and visceral adipose content was determined with MicroView software. Upon sacrifice 1 week later, visceral adipocytes were isolated via collagenase digestion, exposed to insulin, and assessed for glucose uptake as above. Results : Because apelin is upregulated by insulin in adipocytes, we measured glucose uptake in differentiated 3T3L1 cells chronically dosed with apelin. Though no differences were observed in basal uptake, insulin-induced uptake was increased versus control (p < 0.05). To further investigate the role of apelin in vivo , we assessed for insulin resistance in apelin KO mice. At 8 weeks of age, apelin KOs were heavier than age-matched wild type controls (25 vs. 22 g; p < 0.05). Though fasting glucose levels were not significantly different between groups, insulin levels were increased in the KOs (895 vs. 477 pg/microL; p < 0.05). In addition, both insulin and glucose tolerance tests were significantly abnormal in the KOs compared to wild type. Moreover, visceral fat volume was greater in the KOs (274 vs. 248 mm 3 /g body weight; p < 0.05). Finally, insulin-stimulated uptake was reduced (p < 0.05). Conclusions : Apelin is necessary for the proper maintenance of glucose homeostasis. Furthermore, apelin potentiates insulin-induced glucose uptake in adipocytes, suggesting a possible mechanism for its insulin sensitizing effects.

2011 ◽  
Vol 392 (6) ◽  
Author(s):  
Eamon P. Rafferty ◽  
Alastair R. Wylie ◽  
Katharine H. Hand ◽  
Chris E. Elliott ◽  
David J. Grieve ◽  
...  

Abstract Physiological secretion of bile acids has previously been linked to the regulation of blood glucose. GLP-1 is an intestinal peptide hormone with important glucose-lowering actions, such as stimulation of insulin secretion and inhibition of glucagon secretion. In this investigation, we assessed the ability of several bile acid compounds to secrete GLP-1 in vitro in STC-1 cells. Bile acids stimulated GLP-1 secretion from 3.3- to 6.2-fold but some were associated with cytolytic effects. Glycocholic and taurocholic acids were selected for in vivo studies in normal and GLP-1R-/- mice. Oral glucose tolerance tests revealed that glycocholic acid did not affect glucose excursions. However, taurocholic acid reduced glucose excursions by 40% in normal mice and by 27% in GLP-1R-/- mice, and plasma GLP-1 concentrations were significantly elevated 30 min post-gavage. Additional studies used incretin receptor antagonists to probe involvement of GLP-1 and GIP in taurocholic acid-induced glucose lowering. The findings suggest that bile acids partially aid glucose regulation by physiologically enhancing nutrient-induced GLP-1 secretion. However, GLP-1 secretion appears to be only part of the glucose-lowering mechanism and our studies indicate that the other major incretin GIP is not involved.


Development ◽  
1992 ◽  
Vol 116 (Supplement) ◽  
pp. 157-165 ◽  
Author(s):  
R. S. P. Beddington ◽  
P. Rashbass ◽  
V. Wilson

Mouse embryos that are homozygous for the Brachyury (T) deletion die at mid-gestation. They have prominent defects in the notochord, the allantois and the primitive streak. Expression of the T gene commences at the onset of gastrulation and is restricted to the primitive streak, mesoderm emerging from the streak, the head process and the notochord. Genetic evidence has suggested that there may be an increasing demand for T gene function along the rostrocaudal axis. Experiments reported here indicate that this may not be the case. Instead, the gradient in severity of the T defect may be caused by defective mesoderm cell movements, which result in a progressive accumulation of mesoderm cells near the primitive streak. Embryonic stem (ES) cells which are homozygous for the T deletion have been isolated and their differentiation in vitro and in vivo compared with that of heterozygous and wild-type ES cell lines. In +/+ ↔ T/T ES cell chimeras the Brachyury phenotype is not rescued by the presence of wild-type cells and high level chimeras show most of the features characteristic of intact T/T mutants. A few offspring from blastocysts injected with T/T ES cells have been born, several of which had greatly reduced or abnormal tails. However, little or no ES cell contribution was detectable in these animals, either as coat colour pigmentation or by isozyme analysis. Inspection of potential +/+ ↔ T/T ES cell chimeras on the 11th or 12th day of gestation, stages later than that at which intact T/T mutants die, revealed the presence of chimeras with caudal defects. These chimeras displayed a gradient of ES cell colonisation along the rostrocaudal axis with increased colonisation of caudal regions. In addition, the extent of chimerism in ectodermal tissues (which do not invaginate during gastrulation) tended to be higher than that in mesodermal tissues (which are derived from cells invaginating through the primitive streak). These results suggest that nascent mesoderm cells lacking the T gene are compromised in their ability to move away from the primitive streak. This indicates that one function of the T genemay be to regulate cell adhesion or cell motility properties in mesoderm cells. Wild-type cells in +/+ ↔ T/T chimeras appear to move normally to populate trunk and head mesoderm, suggesting that the reduced motility in T/T cells is a cell autonomous defect


1999 ◽  
Vol 277 (4) ◽  
pp. E617-E623 ◽  
Author(s):  
Christophe Broca ◽  
René Gross ◽  
Pierre Petit ◽  
Yves Sauvaire ◽  
Michèle Manteghetti ◽  
...  

We have recently shown in vitro that 4-hydroxyisoleucine (4-OH-Ile), an amino acid extracted from fenugreek seeds, potentiates insulin secretion in a glucose-dependent manner. The present study was designed to investigate whether 4-OH-Ile could exert in vivo insulinotropic and antidiabetic properties. For this purpose, intravenous or oral glucose tolerance tests (IVGTTs and OGTTs, respectively) were performed not only in normal animals but also in a type II diabetes rat model. During IVGTT in normal rats or OGTT in normal dogs, 4-OH-Ile (18 mg/kg) improved glucose tolerance. The lactonic form of 4-OH-Ile was ineffective in normal rats. In non-insulin-dependent diabetic (NIDD) rats, a single intravenous administration of 4-OH-Ile (50 mg/kg) partially restored glucose-induced insulin response without affecting glucose tolerance; a 6-day subchronic administration of 4-OH-Ile (50 mg/kg, daily) reduced basal hyperglycemia, decreased basal insulinemia, and slightly, but significantly, improved glucose tolerance. In vitro, 4-OH-Ile (200 μM) potentiated glucose (16.7 mM)-induced insulin release from NIDD rat-isolated islets. So, the antidiabetic effects of 4-OH-Ile on NIDD rats result, at least in part, from a direct pancreatic B cell stimulation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 776-776
Author(s):  
Zhongfa Yang ◽  
Alan G. Rosmarin

Abstract GABP is an ets transcription factor that regulates transcription of key myeloid genes, including CD18 (beta2 leukocyte integrin), neutrophil elastase, lysozyme, and other key mediators of the inflammatory response; it is also known to regulate important cell cycle control genes. GABP consists of two distinct and unrelated proteins that, together, form a functional transcription factor complex. GABPalpha (GABPa) is an ets protein that binds to DNA; it forms a tetrameric complex by recruiting its partner, GABPbeta (GABPb), which contains the transactivation domain. GABPa is a single copy gene in both the human and murine genomes and it is the only protein that can recruit GABPb to DNA. We cloned GABPa from a murine genomic BAC library and prepared a targeting vector in which exon 9 (which encodes the GABPa ets domain) was flanked by loxP (floxed) recombination sites. The targeting construct was electroporated into embryonic stem cells, homologous recombinants were implanted into pseudopregnant mice, heterozygous floxed GABPa mice were identified, and intercrossing yielded expected Mendelian ratios of wild type, heterozygous, and homozygous floxed GABPa mice. Breeding of heterozygous floxed GABPa mice to CMV-Cre mice (which express Cre recombinase in all tissues) yielded expected numbers of hemizygous mice (only one intact GABPa allele), but no nullizygous (GABPa−/−) mice among 64 pups; we conclude that homozygous deletion of GABPa causes an embryonic lethal defect. To determine the effect of GABPa deletion on myeloid cell development, we bred heterozygous and homozygous floxed mice to LysMCre mice, which express Cre only in myeloid cells. These mice had a normal complement of myeloid cells but, unexpectedly, PCR indicated that their Gr1+ myeloid cells retained an intact (undeleted) floxed GABPa allele. We detected similar numbers of in vitro myeloid colonies from bone marrow of wild type, heterozygous floxed, and homozygous floxed progeny of LysMCre matings. However, PCR of twenty individual in vitro colonies from homozygous floxed mice indicated that they all retained an intact floxed allele. Breeding of floxed GABPa/LysMCre mice with hemizygous mice indicated that retention of a floxed allele was not due to incomplete deletion by LysMCre; rather, it appears that only myeloid cells that retain an intact GABPa allele can survive to mature in vitro or in vivo. We prepared murine embryonic fibroblasts from homozygous floxed mice and efficiently deleted GABPa in vitro. We found striking abnormalities in proliferation and G1/S phase arrest. We used quantitative RT-PCR to identify mechanisms that account for the altered growth of GABPa null cells. We found dramatically reduced expression of known GABP target genes that regulate DNA synthesis and cell cycle that appear to account for the proliferative defect. We conclude that GABPa is required for growth and maturation of myeloid cells and we identified downstream targets that may account for their failure to proliferate and mature in vitro and in vivo.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 806-806 ◽  
Author(s):  
Shivani Soni ◽  
Shashi Bala ◽  
Babette Gwynn ◽  
Kenneth E. Sahr ◽  
Luanne L. Peters ◽  
...  

Abstract Emp, erythroblast macrophage protein, was originally detected in erythroblasts and macrophages, which form erythroblastic islands during erythropoiesis in the human bone marrow. The physical contact between erythroblasts and macrophages was suggested to promote the terminal maturation of erythroblasts, leading to their enucleation in vitro. To evaluate the function of Emp in vivo, we employed gene targeting studies to develop an Emp(−/−) mouse model. Mouse embryonic stem cells containing a gene-trap insertion in Emp were obtained from BayGenomics. Insertion of the gene-trap vector into Emp was verified by direct sequencing of cDNA obtained by 5′RACE. Chimeric mice generated by blastocyst microinjection were intercrossed, and the offspring were genotyped by PCR and Southern hybridization. The Emp (+/−) mice were healthy and fertile. However, no live Emp (−/−) mice were found among the progeny of the Emp (+/−) intercrosses. Analysis of timed pregnancies revealed that Emp (−/−) embryos were present at a frequency roughly consistent with Mendelian inheritance throughout the embryonal stages. Homozygous Emp (−/−) embryos were small and pale compared to their littermates, and they survived embryonic development but died at birth. To determine the effect, if any, of Emp gene deletion on definitive hematopoiesis, livers of +/+, +/−, and −/− embryos at E15.5 were examined after H&E and Giemsa staining of paraffin-embedded serial sections, and cytospins. We found few mature erythroid cells in the sinusoids of homozygotes, in contrast to those of either wild-type or heterozygotes, where abundant enucleated red blood cells were observed. Although nucleated erythrocytes were found in both wild-type and mutant embryos, their relative proportions were very different: the less mature forms (proerythroblasts) predominated in the −/− embryos whereas the more mature forms (polychromatophilic/orthochromatic and enucleated erythrocytes) were most common in +/+ and +/− embryos. Furthermore, erythroblastic islands consisting of a central macrophage surrounded by developing erythroblasts were seen in the cytospin preparations of wild-type and heterozygote livers but not in those of homozygous null livers. Since fetal liver macrophages (FLMs) are indispensable for definitive erythropoiesis, we investigated the effect that Emp’s absence might have on development of FLMs. The E15.5 fetal liver sections were stained with the macrophage-specific F4/80 antigen. Numerous F4/80-positive macrophages were present throughout the liver of normal embryos whereas, the number was substantially reduced in Emp (−/−) liver. In summary, in the absence of Emp, FLMs are significantly reduced and terminal maturation of erythroid cells is negatively affected. Thus, the availability of Emp(−/−) embryos will provide a unique experimental model to study the function of macrophages in definitive erythropoiesis.


2010 ◽  
Vol 298 (3) ◽  
pp. E548-E554 ◽  
Author(s):  
Rickard Westergren ◽  
Daniel Nilsson ◽  
Mikael Heglind ◽  
Zahra Arani ◽  
Mats Grände ◽  
...  

Many members of the forkhead genes family of transcription factors have been implicated as important regulators of metabolism, in particular, glucose homeostasis, e.g., Foxo1, Foxa3, and Foxc2. The purpose of this study was to exploit the possibility that yet unknown members of this gene family play a role in regulating glucose tolerance in adipocytes. We identified Foxf2 in a screen for adipose-expressed forkhead genes. In vivo overexpression of Foxf2 in an adipose tissue-restricted fashion demonstrated that such mice display a significantly induced insulin secretion in response to an intravenous glucose load compared with wild-type littermates. In response to increased Foxf2 expression, insulin receptor substrate 1 (IRS1) mRNA and protein levels are significantly downregulated in adipocytes; however, the ratio of serine vs. tyrosine phosphorylation of IRS1 seems to remain unaffected. Furthermore, adipocytes overexpressing Foxf2 have a significantly lower insulin-mediated glucose uptake compared with wild-type adipocytes. These findings argue that Foxf2 is a previously unrecognized regulator of cellular and systemic whole body glucose tolerance, at least in part, due to lower levels of IRS1. Foxf2 and its downstream target genes can provide new insights with regard to identification of novel therapeutic targets.


2003 ◽  
Vol 23 (6) ◽  
pp. 658-664 ◽  
Author(s):  
Diarmuid Smith ◽  
Andrew Pernet ◽  
William A. Hallett ◽  
Emma Bingham ◽  
Paul K. Marsden ◽  
...  

Recent in vitro studies suggest that lactate, rather than glucose, may be the preferred fuel for neuronal metabolism. The authors examined the effect of lactate on global brain glucose uptake in euglycemic human subjects using 18fluorodeoxyglucose (FDG) positron emission tomography (PET). Eight healthy men, aged 40 to 54 years, underwent a 60-minute FDG-PET scan on two occasions in random order. On one occasion, 6.72% sodium lactate was infused at a rate of 50 μmol · kg−1 · min−1 for 20 minutes and then reduced to 30 μmol · kg−1 · min−1; 1.4% sodium bicarbonate was infused as a control on the other occasion. Plasma glucose levels were not different between the two groups (5.3 ± 0.23 and 5.3 ± 0.24 mmol/L, P = 0.55). Plasma lactate was significantly elevated by lactate infusion (4.08 ± 0.35 vs. 0.63 ± 0.22 mmol/L, P < 0.0005. The whole-brain rate of glucose uptake was significantly reduced by approximately 17% during lactate infusion (0.195 ± 0.022 vs. 0.234 ± 0.020 μmol · g−1 · min−1, P = 0.001). The authors conclude that, in vivo in humans, circulating lactate is used by the brain at euglycemia, with sparing of glucose.


2011 ◽  
Vol 300 (1) ◽  
pp. R85-R91 ◽  
Author(s):  
J. L. Gamboa ◽  
Mary L. Garcia-Cazarin ◽  
Francisco H. Andrade

People living at high altitude appear to have lower blood glucose levels and decreased incidence of diabetes. Faster glucose uptake and increased insulin sensitivity are likely explanations for these findings: skeletal muscle is the largest glucose sink in the body, and its adaptation to the hypoxia of altitude may influence glucose uptake and insulin sensitivity. This study tested the hypothesis that chronic normobaric hypoxia increases insulin-stimulated glucose uptake in soleus muscles and decreases plasma glucose levels. Adult male C57BL/6J mice were kept in normoxia [fraction of inspired O2 = 21% (Control)] or normobaric hypoxia [fraction of inspired O2 = 10% (Hypoxia)] for 4 wk. Then blood glucose and insulin levels, in vitro muscle glucose uptake, and indexes of insulin signaling were measured. Chronic hypoxia lowered blood glucose and plasma insulin [glucose: 14.3 ± 0.65 mM in Control vs. 9.9 ± 0.83 mM in Hypoxia ( P < 0.001); insulin: 1.2 ± 0.2 ng/ml in Control vs. 0.7 ± 0.1 ng/ml in Hypoxia ( P < 0.05)] and increased insulin sensitivity determined by homeostatic model assessment 2 [21.5 ± 3.8 in Control vs. 39.3 ± 5.7 in Hypoxia ( P < 0.03)]. There was no significant difference in basal glucose uptake in vitro in soleus muscle (1.59 ± 0.24 and 1.71 ± 0.15 μmol·g−1·h−1 in Control and Hypoxia, respectively). However, insulin-stimulated glucose uptake was 30% higher in the soleus after 4 wk of hypoxia than Control (6.24 ± 0.23 vs. 4.87 ± 0.37 μmol·g−1·h−1, P < 0.02). Muscle glycogen content was not significantly different between the two groups. Levels of glucose transporters 4 and 1, phosphoinositide 3-kinase, glycogen synthase kinase 3, protein kinase B/Akt, and AMP-activated protein kinase were not affected by chronic hypoxia. Akt phosphorylation following insulin stimulation in soleus muscle was significantly (25%) higher in Hypoxia than Control ( P < 0.05). Neither glycogen synthase kinase 3 nor AMP-activated protein kinase phosphorylation changed after 4 wk of hypoxia. These results demonstrate that the adaptation of skeletal muscles to chronic hypoxia includes increased insulin-stimulated glucose uptake.


2010 ◽  
Vol 298 (1) ◽  
pp. E59-E67 ◽  
Author(s):  
Patrick Yue ◽  
Hong Jin ◽  
Marissa Aillaud ◽  
Alicia C. Deng ◽  
Junya Azuma ◽  
...  

The recently discovered peptide apelin is known to be involved in the maintenance of insulin sensitivity. However, questions persist regarding its precise role in the chronic setting. Fasting glucose, insulin, and adiponectin levels were determined on mice with generalized deficiency of apelin (APKO). Additionally, insulin (ITT) and glucose tolerance tests (GTT) were performed. To assess the impact of exogenously delivered apelin on insulin sensitivity, osmotic pumps containing pyroglutamated apelin-13 or saline were implanted in APKO mice for 4 wk. Following the infusion, ITT/GTTs were repeated and the animals euthanized. Soleus muscles were harvested and homogenized in lysis buffer, and insulin-induced Akt phosphorylation was determined by Western blotting. Apelin-13 infusion and ITTs/GTTs were also performed in obese diabetic db/db mice. To probe the underlying mechanism for apelin's effects, apelin-13 was also delivered to cultured C2C12 myotubes. 2-[3H]deoxyglucose uptake and Akt phosphorylation were assessed in the presence of various inhibitors. APKO mice had diminished insulin sensitivity, were hyperinsulinemic, and had decreased adiponectin levels. Soleus lysates had decreased insulin-induced Akt phosphorylation. Administration of apelin to APKO and db/db mice resulted in improved insulin sensitivity. In C2C12 myotubes, apelin increased glucose uptake and Akt phosphorylation. These events were fully abrogated by pertussis toxin, compound C, and siRNA knockdown of AMPKα1 but only partially diminished by LY-294002 and not at all by l-NAME. We conclude that apelin is necessary for the maintenance of insulin sensitivity in vivo. Apelin's effects on glucose uptake and Akt phosphorylation are in part mediated by a Gi and AMPK-dependent pathway.


2002 ◽  
Vol 173 (1) ◽  
pp. 63-71 ◽  
Author(s):  
CW Elton ◽  
JS Pennington ◽  
SA Lynch ◽  
FM Carver ◽  
SN Pennington

Maternal diet during pregnancy has been reported to alter the offspring's ability to respond to a glucose challenge. The current studies report changes in basal and insulin-stimulated, in vitro glucose uptake in red (soleus) and white (extensor digitorum longus) muscle fiber types, as well as whole body insulin responsiveness of adult rat offspring associated with their mother's dietary fat and alcohol content during pregnancy. The offspring of Harlan-derived Sprague-Dawley female rats, dosed during pregnancy with ethanol (ETOH) via a liquid diet (35% of calories as ETOH) with either 12% or 35% of calories as fat, were compared with offspring from litters whose mothers were pair-fed an isocaloric amount of the liquid diet without ETOH. Maternal access to the liquid diets was terminated on day 20 of the pregnancies (sperm plug=day 0). The offspring were surrogate fostered within 48 h of birth to mothers which had consumed commercial chow throughout their pregnancy. Following weaning at 21 days of age, the offspring consumed only commercial rat chow and they were examined over the next 14 months for changes in glucose homeostasis as a consequence of in utero exposure to maternal dietary fat and/or alcohol. The 35% maternal fat diet resulted in both in vivo and in vitro decreases in insulin sensitivity. Thus, compared with adults whose mother's diet contained 12% fat, significant, in vitro muscle and in vivo whole body insulin resistance (measured by hyperinsulinemic-euglycemic clamping) was observed in adult rats whose mothers consumed 35% of dietary calories as fat. The addition of ethanol to the maternal 35% fat diet further reduced the offspring's red muscle tissues in vitro response to insulin, but did not affect whole body insulin sensitivity. Muscle basal and insulin-stimulated receptor tyrosine kinase activity were significantly decreased (approximately -50%) by the 35% fat maternal diet but there was no compensatory increase in serum insulin or glucose levels. Based upon both in vivo and in vitro data, these studies suggested that in utero exposure to 35% fat has a sustained effect on the adult offspring's glucose uptake/insulin sensitivity and that the effect is paralleled, at least in part, by decreased insulin receptor tyrosine kinase activity. In utero ETOH exposure resulted in the loss of basal and insulin-stimulated, in vitro glucose uptake in red muscle fibers but maternal dietary ETOH had no detectable effect on either in vivo insulin sensitivity or muscle tyrosine kinase activity.


Sign in / Sign up

Export Citation Format

Share Document