scholarly journals Inhibition of hepatic Niemann-Pick C1-like 1 improves hepatic insulin resistance

2009 ◽  
Vol 297 (5) ◽  
pp. E1030-E1038 ◽  
Author(s):  
Mitsunori Nomura ◽  
Hideto Ishii ◽  
Akio Kawakami ◽  
Masayuki Yoshida

The present study attempted to define the role of hepatic Niemann-Pick C1-like 1 (NPC1L1), a cholesterol transporter, in hepatic insulin resistance as well as hepatic steatosis. The inhibition of NPC1L1 and its molecular consequences were examined in Zucker obese fatty (ZOF) rats and cultured steatotic hepatocytes using ezetimibe, a pharmacoloigcal inhibitor of NPC1L1, and short hairpin RNA (shRNA) of NPC1L1. Ezetimibe improved hepatic insulin signaling as well as hepatic steatosis in ZOF rats. It also restored insulin sensitivity in steatotic hepatocytes in vitro through a reduction in hepatic reactive oxygen species (ROS) generation, JNK activation, and ER stress. In addition, ezetimibe recovered insulin-induced Akt activation and reduced gluconeogenic genes in the liver of ZOF rats and cultured steatotic hepatocytes. Transfection of NPC1L1 shRNA into hepatocytes also reduced ROS generation and ER stress. These results indicate that NPC1L1 contributes to hepatic insulin resistance through cholesterol accumulation, and its inhibition could be a potential therapeutic target of hepatic insulin resistance.

2020 ◽  
Vol 11 ◽  
Author(s):  
Han Cheng ◽  
Xiaokun Gang ◽  
Guangyu He ◽  
Yujia Liu ◽  
Yingxuan Wang ◽  
...  

Mitochondria and the endoplasmic reticulum (ER) are connected at multiple sites via what are known as mitochondria-associated ER membranes (MAMs). These associations are known to play an important role in maintaining cellular homeostasis. Impaired MAM signaling has wide-ranging effects in many diseases, such as obesity, diabetes, and neurodegenerative disorders. Accumulating evidence has suggested that MAMs influence insulin signaling through different pathways, including those associated with Ca2+ signaling, lipid metabolism, mitochondrial function, ER stress responses, and inflammation. Altered MAM signaling is a common feature of insulin resistance in different tissues, including the liver, muscle, and even the brain. In the liver, MAMs are key glucose-sensing regulators and have been proposed to be a hub for insulin signaling. Impaired MAM integrity has been reported to disrupt hepatic responses to changes in glucose availability during nutritional transition and to induce hepatic insulin resistance. Meanwhile, these effects can be rescued by the reinforcement of MAM interactions. In contrast, several studies have proposed that enhanced ER-mitochondria connections are detrimental to hepatic insulin signaling and can lead to mitochondrial dysfunction. Thus, given these contradictory results, the role played by the MAM in the regulation of hepatic insulin signaling remains elusive. Similarly, in skeletal muscle, enhanced MAM formation may be beneficial in the early stage of diabetes, whereas continuous MAM enhancement aggravates insulin resistance. Furthermore, recent studies have suggested that ER stress may be the primary pathway through which MAMs induce brain insulin resistance, especially in the hypothalamus. This review will discuss the possible mechanisms underlying MAM-associated insulin resistance as well as the therapeutic potential of targeting the MAM in the treatment of type 2 diabetes.


2021 ◽  
Author(s):  
Lele Cheng ◽  
Tao Chen ◽  
Manyun Guo ◽  
Peining Liu ◽  
Xiangrui Qiao ◽  
...  

Recent studies reveal that bile acid metabolite composition and its metabolism are changed in metabolic disorders, such as obesity, type 2 diabetes and metabolic associated fatty liver disease (MAFLD), yet its role and the mechanism remain largely unknown. In the present study, metabolomic analysis of 163 serum and stool samples of our metabolic disease cohort was performed and we identified glycoursodeoxycholic acid (GUDCA), glycine-conjugated bile acid produced from intestinal bacteria, were decreased in both serum and stool samples from patients with hyperglycemia. RNA-sequencing and quantitative PCR results indicated that GUDCA alleviated endoplasmic reticulum (ER) stress in livers of high fat diet (HFD)-fed mice without alteration of liver metabolism. In vitro, GUDCA reduced palmitic acid induced-ER stress and -apoptosis, as well as stabilized calcium homeostasis. In vivo, GUDCA exerted effects on amelioration of HFD-induced insulin resistance and hepatic steatosis. In parallel, ER stress and apoptosis were decreased in GUDCA-treated mice as compared to vehicle-treated mice in liver. These findings demonstrate that reduced GUDCA is an indicator of hyperglycemia. Supplementation of GUDCA could be an option for the treatment of diet-induced metabolic disorders, including insulin resistance and hepatic steatosis, with inhibiting ER stress.


2020 ◽  
Vol 52 (09) ◽  
pp. 669-675
Author(s):  
Jing Lu ◽  
Han Shen ◽  
Qi Li ◽  
Feng-Ran Xiong ◽  
Ming-Xia Yuan ◽  
...  

AbstractAdult patients with a dysfunctional ether-a-go-go 2 (hERG2) protein, which is encoded by the KCNH6 gene, present with hyperinsulinemia and hyperglycemia. However, the mechanism of KCNH6 in glucose metabolism disorders has not been clearly defined. It has been proposed that sustained endoplasmic reticulum (ER) stress is closely concerned with hepatic insulin resistance and inflammation. Here, we demonstrate that Kcnh6 knockout (KO) mice had impaired glucose tolerance and increased levels of hepatic apoptosis, in addition to displaying an increased insulin resistance that was mediated by high ER stress levels. By contrast, overexpression of KCNH6 in primary hepatocytes led to a decrease in ER stress and apoptosis induced by thapsigargin. Similarly, induction of Kcnh6 by tail vein injection into KO mice improved glucose tolerance by reducing ER stress and apoptosis. Furthermore, we show that KCNH6 alleviated hepatic ER stress, apoptosis, and inflammation via the NFκB-IκB kinase (IKK) pathway both in vitro and in vivo. In summary, our study provides new insights into the causes of ER stress and subsequent induction of primary hepatocytes apoptosis.


2020 ◽  
Vol 61 (12) ◽  
pp. 1565-1576 ◽  
Author(s):  
Abudukadier Abulizi ◽  
Daniel F. Vatner ◽  
Zhang Ye ◽  
Yongliang Wang ◽  
Joao-Paulo Camporez ◽  
...  

Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensive metabolic phenotyping of liver-specific MTTP knockout (L-Mttp−/−) mice and age-weight matched wild-type control mice. Young (10–12-week-old) L-Mttp−/− mice exhibited hepatic steatosis and increased DAG content; however, the increase in hepatic DAG content was partitioned to the lipid droplet and was not increased in the plasma membrane. Young L-Mttp−/− mice also manifested normal hepatic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamps, no PKCε activation, and normal hepatic insulin signaling from the insulin receptor through AKT Ser/Thr kinase. In contrast, aged (10-month-old) L-Mttp−/− mice exhibited glucose intolerance and hepatic insulin resistance along with an increase in hepatic plasma membrane sn-1,2-DAG content and PKCε activation. Treatment with a functionally liver-targeted mitochondrial uncoupler protected the aged L-Mttp−/− mice against the development of hepatic steatosis, increased plasma membrane sn-1,2-DAG content, PKCε activation, and hepatic insulin resistance. Furthermore, increased hepatic insulin sensitivity in the aged controlled-release mitochondrial protonophore-treated L-Mttp−/− mice was not associated with any reductions in hepatic ceramide content. Taken together, these data demonstrate that differences in the intracellular compartmentation of sn-1,2-DAGs in the lipid droplet versus plasma membrane explains the dissociation of NAFLD/lipid-induced hepatic insulin resistance in young L-Mttp−/− mice as well as the development of lipid-induced hepatic insulin resistance in aged L-Mttp−/− mice.


2021 ◽  
Author(s):  
Kakali Ghoshal ◽  
Xiyue Li ◽  
Dungeng Peng ◽  
John R. Falck ◽  
Raghunath Reddy Anugu ◽  
...  

We previously showed that global deletion of the cytochrome P450 epoxygenase <i>Cyp2c44</i>, a major epoxyeicosatrienoic acid (EET) producing enzyme in mice, leads to impaired hepatic insulin signaling resulting in insulin resistance. This finding led us to investigate whether administration of a water soluble EET analog restores insulin signaling <i>in vivo</i> in <i>Cyp2c44(-/-)</i> mice and investigated the underlying mechanisms by which this effect is exerted. <i>Cyp2c44(-/-)</i> mice treated with the analog EET-A for 4 weeks improved fasting glucose and glucose tolerance compared to <i>Cyp2c44(-/-)</i> mice treated with vehicle alone. This beneficial effect was accompanied by enhanced hepatic insulin signaling, decreased expression of gluconeogenic genes and increased expression of glycogenic genes. Mechanistically, we show that insulin-stimulated phosphorylation of insulin receptor β (IRβ) is impaired in primary <i>Cyp2c44(-/-) </i>hepatocytes and this can be restored by cotreatment with EET-A and insulin. Plasma membrane fractionations of livers indicated that EET-A enhances the retention of IRβ in membrane rich fractions, thus potentiating its activation. Altogether, EET analogs ameliorate insulin signaling in a genetic model of hepatic insulin resistance by stabilizing membrane-associated IRβ and potentiating insulin signaling.


Shock ◽  
2010 ◽  
Vol 33 (3) ◽  
pp. 299-305 ◽  
Author(s):  
Gerd G. Gauglitz ◽  
Stefanie Halder ◽  
Darren F. Boehning ◽  
Gabriela A. Kulp ◽  
David N. Herndon ◽  
...  

2019 ◽  
Vol 20 (9) ◽  
pp. 2109 ◽  
Author(s):  
Arulkumar Nagappan ◽  
Jooyeon Shin ◽  
Myeong Ho Jung

Endogenous cannabinoids (ECs) are lipid-signaling molecules that specifically bind to cannabinoid receptor types 1 and 2 (CB1R and CB2R) and are highly expressed in central and many peripheral tissues under pathological conditions. Activation of hepatic CB1R is associated with obesity, insulin resistance, and impaired metabolic function, owing to increased energy intake and storage, impaired glucose and lipid metabolism, and enhanced oxidative stress and inflammatory responses. Additionally, blocking peripheral CB1R improves insulin sensitivity and glucose metabolism and also reduces hepatic steatosis and body weight in obese mice. Thus, targeting EC receptors, especially CB1R, may provide a potential therapeutic strategy against obesity and insulin resistance. There are many CB1R antagonists, including inverse agonists and natural compounds that target CB1R and can reduce body weight, adiposity, and hepatic steatosis, and those that improve insulin sensitivity and reverse leptin resistance. Recently, the use of CB1R antagonists was suspended due to adverse central effects, and this caused a major setback in the development of CB1R antagonists. Recent studies, however, have focused on development of antagonists lacking adverse effects. In this review, we detail the important role of CB1R in hepatic insulin resistance and the possible underlying mechanisms, and the therapeutic potential of CB1R targeting is also discussed.


Endocrinology ◽  
2005 ◽  
Vol 146 (8) ◽  
pp. 3417-3427 ◽  
Author(s):  
Peter J. Klover ◽  
Alicia H. Clementi ◽  
Robert A. Mooney

Abstract Obesity and insulin resistance are considered chronic inflammatory states, in part because circulating IL-6 is elevated. Exogenous IL-6 can induce hepatic insulin resistance in vitro and in vivo. The importance of endogenous IL-6, however, to insulin resistance of obesity is unresolved. To test the hypothesis that IL-6 contributes to the inflammation and insulin resistance of obesity, IL-6 was depleted in Lepob mice by injection of IL-6-neutralizing antibody. In untreated Lepob mice, signal transducer and activator of transcription-3 (STAT3) activation was increased compared with that in lean controls, consistent with an inflammatory state. With IL-6 depletion, activation of STAT3 in liver and adipose tissue and expression of haptoglobin were reduced. Expression of the IL-6-dependent, hepatic acute phase protein fibrinogen was also decreased. Using the hyperinsulinemic-euglycemic clamp technique, insulin-dependent suppression of endogenous glucose production was 89% in IL-6-depleted Lepob mice, in contrast to only 32% in Lepob controls, indicating a marked increase in hepatic insulin sensitivity. A significant change in glucose uptake in skeletal muscle after IL-6 neutralization was not observed. In a direct comparison of hepatic insulin signaling in Lepob mice treated with anti-IL-6 vs. IgG-treated controls, insulin-dependent insulin receptor autophosphorylation and activation of Akt (pSer473) were increased by nearly 50% with IL-6 depletion. In adipose tissue, insulin receptor signaling showed no significant change despite major reductions in STAT3 phosphorylation and haptoglobin expression. In diet-induced obese mice, depletion of IL-6 improved insulin responsiveness in 2-h insulin tolerance tests. In conclusion, these results indicate that IL-6 plays an important and selective role in hepatic insulin resistance of obesity.


Sign in / Sign up

Export Citation Format

Share Document