Differential regulation of stimulated glucose transport by free fatty acids and PPARα or -δ agonists in cardiac myocytes

2012 ◽  
Vol 302 (7) ◽  
pp. E872-E884 ◽  
Author(s):  
Mohamed Asrih ◽  
René Lerch ◽  
Irène Papageorgiou ◽  
Corinne Pellieux ◽  
Christophe Montessuit

Stimulation of glucose transport in response to insulin or metabolic stress is an important determinant of cardiac myocyte function and survival, particularly during ischemia-reperfusion episodes. The impact of dyslipidemia and its consequence PPAR activation on stimulated glucose transport in cardiac myocytes remains unknown. Isolated adult rat cardiac myocytes were chronically exposed to free fatty acids (FFA) or PPAR agonists. Insulin- (ISGT) and oligomycin-stimulated glucose transport (OSGT) and related cell signaling were analyzed. Exposure of cardiac myocytes to FFA reduced both ISGT and OSGT. Exposure to either PPARα or PPARδ agonists, but not to a PPARγ agonist, reduced ISGT but not OSGT and increased fatty acid oxidation (FAO). The reduction in ISGT was associated with impaired insulin signaling and, in the case of PPAR stimulation, overexpression of SOCS-3, a protein known to hinder proximal insulin signaling. In contrast, the reduction of OSGT could not be explained by a reduced activity of the cellular energy-sensing system, as assessed from the maintained phosphorylation state of AMPK. Inhibition of FAO at the level of mitochondrial acylcarnitine uptake restored OSGT but not ISGT. Seemingly paradoxically, further stimulation of FAO with PPARα or PPARδ agonists also restored OSGT but not ISGT. Together, these results suggest that inhibition of OSGT occurs downstream of energy gauging and is caused by some intermediate(s) of fatty acid oxidation, which does not appear to be acylcarnitines. The results indicate that the mechanisms underlying FFA-mediated inhibition of ISGT and OSGT differ remarkably.

1973 ◽  
Vol 57 (1) ◽  
pp. 109-116 ◽  
Author(s):  
J. V. Anastasia ◽  
R. L. McCarl

This paper reports the determination of the ability of rat heart cells in culture to release [14C]palmitate from its triglyceride and to oxidize this fatty acid and free [14C]palmitate to 14CO2 when the cells are actively beating and when they stop beating after aging in culture. In addition, the levels of glucose, glycogen, and ATP were determined to relate the concentration of these metabolites with beating and with cessation of beating. When young rat heart cells in culture are actively beating, they oxidize free fatty acids at a rate parallel with cellular ATP production. Both fatty acid oxidation and ATP production remain constant while the cells continue to beat. Furthermore, glucose is removed from the growth medium by the cells and stored as glycogen. When cultured cells stop beating, a decrease is seen in their ability to oxidize free fatty acids and to release them from their corresponding triglycerides. Concomitant with decreased fatty acid oxidation is a decrease in cellular levels of ATP until beating ceases. Midway between initiation of cultures and cessation of beating the cells begin to mobilize the stored glycogen. When the growth medium is supplemented with cortisol acetate and given to cultures which have ceased to beat, reinitiation of beating occurs. Furthermore, all decreases previously observed in ATP levels, fatty acid oxidation, and esterase activity are restored.


1975 ◽  
Vol 229 (4) ◽  
pp. 885-889 ◽  
Author(s):  
Crass MF ◽  
GM Pieper

The metabolism of cardiac lipids and glycogen in hypoxic and well-oxygenated perfused rat hearts was studied in the presence or absence of epinephrine. Heart lipids were pre-labeled in vivo with [1-14C]palmitate. Triglyceride disappearance (measured chemically and radiochemically) was observed in well-oxygenated hearts and was stimulated by epinephrine (4.1 X 10(-7)M). Utilization of tissue triglycerides was inhibited in hypoxic hearts in the presence or absence of added epinephrine. Hypoxia resulted in a small increase in tissue 14C-free fatty acids and inhibition of 14C-labeled triglyceride fatty acid oxidation. Epinephrine had no stimulatory effect on fatty acid oxidation in hypoxic hearts. Utilization of 14C-labeled phospholipids (and total phospholipids) was similar in well-oxygenated and hypoxic hearts with or without added epinephrine. These results suggested that the antilipolytic effects of hypoxia were predominant over the lipolytic effects of epinephrine. Glycogenolysis was stimulated threefold by epinephrine in well-oxygenated hearts. Hypoxia alone was a potent stimulus to glycogenolysis. Addition of epinephrine to perfusates of hypoxic hearts resulted in a slight enhancement of glycogenolysis.


1997 ◽  
Vol 267 (2) ◽  
pp. 143-154 ◽  
Author(s):  
G Martı́nez ◽  
G Jiménez-Sánchez ◽  
P Divry ◽  
C Vianey-Saban ◽  
E Riudor ◽  
...  

2007 ◽  
Vol 32 (2) ◽  
pp. 241-248 ◽  
Author(s):  
Julien Lamontagne ◽  
Pellegrino Masiello ◽  
Mariannick Marcil ◽  
Viviane Delghingaro-Augusto ◽  
Yan Burelle ◽  
...  

Deteriorating islet β-cell function is key in the progression of an impaired glucose tolerance state to overt type 2 diabetes (T2D), a transition that can be delayed by exercise. We have previously shown that trained rats are protected from heart ischemia–reperfusion injury in correlation with an increase in cardiac tissue fatty-acid oxidation. This trained metabolic phenotype, if induced in the islet, could also prevent β-cell failure in the pathogenesis of T2D. To assess the effect of training on islet lipid metabolism and insulin secretion, female Sprague–Dawley rats were exercised on a treadmill for 90 min/d, 4 d/week, for 10 weeks. Islet fatty-acid oxidation, the expression of key lipid metabolism genes, and glucose-stimulated insulin secretion were determined in freshly isolated islets from trained and sedentary control rats after a 48 h rest period from the last exercise. Although this moderate training reduced plasma glycerol, free fatty acids, and triglyceride levels by about 40%, consistent with reduced lipolysis from adipose tissue, it did not alter islet fatty-acid oxidation, nor the islet expression of key transcription factors and enzymes of lipid metabolism. The training also had no effect on glucose-stimulated insulin secretion or its amplification by free fatty acids. In summary, chronic exercise training did not cause an intrinsic change in islet lipid metabolism. Training did, however, substantially reduce the exposure of islets to exogenous lipid, thereby providing a potential mechanism by which exercise can prevent islet β-cell failure leading to T2D.


1972 ◽  
Vol 128 (5) ◽  
pp. 1057-1067 ◽  
Author(s):  
E. D Saggerson

1. 0.5mm-Palmitate stimulated incorporation of [U-14C]glucose into glyceride glycerol and fatty acids in normal fat cells in a manner dependent upon the glucose concentration. 2. In the presence of insulin the incorporation of 5mm-glucose into glyceride fatty acids was increased by concentrations of palmitate, adrenaline and 6-N-2′-O-dibutyryladenosine 3′:5′-cyclic monophosphate up to 0.5mm, 0.5μm and 0.5mm respectively. Higher concentrations of these agents produced progressive decreases in the rate of glucose incorporation into fatty acids. 3. The effects of palmitate and lipolytic agents upon the measured parameters of glucose utilization were similar, suggesting that the effects of lipolytic agents are mediated through increased concentrations of free fatty acids. 4. In fat cells from 24h-starved rats, maximal stimulation of glucose incorporation into fatty acids was achieved with 0.25mm-palmitate. Higher concentrations of palmitate were inhibitory. In fat cells from 72h-starved rats, palmitate only stimulated glucose incorporation into fatty acids at high concentrations of palmitate (1mm and above). 5. The ability of fat cells to incorporate glucose into glyceride glycerol in the presence of palmitate decreased with increasing periods of starvation. 6. It is suggested that low concentrations of free fatty acids stimulate fatty acid synthesis from glucose by increasing the utilization of ATP and cytoplasmic NADH for esterification of these free fatty acids. When esterification of free fatty acids does not keep pace with their provision, inhibition of fatty acid synthesis occurs. Provision of free fatty acids far in excess of the esterification capacity of the cells leads to uncoupling of oxidative phosphorylation and a secondary stimulation of fatty acid synthesis from glucose.


Metabolites ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 322
Author(s):  
Jae-Eun Song ◽  
Tiago C. Alves ◽  
Bernardo Stutz ◽  
Matija Šestan-Peša ◽  
Nicole Kilian ◽  
...  

In the presence of high abundance of exogenous fatty acids, cells either store fatty acids in lipid droplets or oxidize them in mitochondria. In this study, we aimed to explore a novel and direct role of mitochondrial fission in lipid homeostasis in HeLa cells. We observed the association between mitochondrial morphology and lipid droplet accumulation in response to high exogenous fatty acids. We inhibited mitochondrial fission by silencing dynamin-related protein 1(DRP1) and observed the shift in fatty acid storage-usage balance. Inhibition of mitochondrial fission resulted in an increase in fatty acid content of lipid droplets and a decrease in mitochondrial fatty acid oxidation. Next, we overexpressed carnitine palmitoyltransferase-1 (CPT1), a key mitochondrial protein in fatty acid oxidation, to further examine the relationship between mitochondrial fatty acid usage and mitochondrial morphology. Mitochondrial fission plays a role in distributing exogenous fatty acids. CPT1A controlled the respiratory rate of mitochondrial fatty acid oxidation but did not cause a shift in the distribution of fatty acids between mitochondria and lipid droplets. Our data reveals a novel function for mitochondrial fission in balancing exogenous fatty acids between usage and storage, assigning a role for mitochondrial dynamics in control of intracellular fuel utilization and partitioning.


1997 ◽  
Vol 82 (12) ◽  
pp. 4208-4213 ◽  
Author(s):  
Kin-Chuen Leung ◽  
Ken K. Y. Ho

In vivo administration of GH induces lipolysis and lipid oxidation. However, it is not clear whether the stimulation of lipid oxidation is a direct effect of GH or is driven by increased substrate supply secondary to lipolysis. An in vitro bioassay has been established for assessing β-oxidation of fatty acids in mitochondria, based on the measurement of conversion of tritiated palmitic acid to 3H2O by fibroblasts in culture. We have modified this assay to investigate whether GH stimulates fatty acid oxidation. GH stimulated oxidation of palmitic acid maximally by 26.7 ± 2.5% (mean ± sem; P < 0.0001). The stimulation was biphasic, with the oxidation rate increasing with increasing GH concentration to a peak response at 1.5 nmol/L and declining to a level not significantly different from control thereafter. Insulin-like growth factor-I at concentrations of up to 250 nmol/L had no significant effect on fatty acid oxidation. GH-binding protein attenuated the effect of GH. An anti-GH receptor (GHR) antibody (MAb263), which dimerizes the receptor and induces GH-like biological actions, significantly stimulated fatty acid oxidation. Another anti-GHR antibody (MAb5), which prevents receptor dimerization, suppressed GH action. In summary, GH directly stimulated fatty acid oxidation, an action not mediated by insulin-like growth factor-I. Dimerization of GHRs was necessary for this effect. This bioassay is a practical tool for studying the regulatory effects of GH on lipid oxidation.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Tariq R Altamimi ◽  
Arata Fukushima ◽  
Liyan Zhang ◽  
Su Gao ◽  
Abhishek Gupta ◽  
...  

Impaired cardiac insulin signaling and high cardiac fatty acid oxidation rates are characteristics of diabetic cardiomyopathy. Potential roles for liver-derived metabolic factors in mediating cardiac energy homeostasis are underappreciated. Plasma levels of adropin, a liver secreted peptide, increase during feeding and decrease during fasting and diabetes. In skeletal muscle, adropin preferentially promotes glucose over fatty acid oxidation. We therefore determined what effect adropin has on cardiac energy metabolism, insulin signaling and cardiac efficiency. C57Bl/6 mice were fasted to accentuate the differences in adropin plasma levels between animals injected 3 times over 24 hr with either vehicle or adropin (450 nmol/kg i.p.). Despite fasting-induced predominance of fatty acid oxidation measured in isolated working hearts, insulin inhibition of fatty acid oxidation was re-established in adropin-treated mice (from 1022±143 to 517±56 nmol. g dry wt -1 . min -1 , p <0.05) compared to vehicle-treated mice (from 757±104 to 818±103 nmol. g dry wt -1 . min -1 ). Adropin-treated mice hearts showed higher cardiac work over the course of perfusion (p<0.05 vs. vehicle), which was accompanied by improved cardiac efficiency and enhanced phosphorylation of insulin signaling enzymes (tyrosine-IRS-1, AS160, p<0.05). Acute addition of adropin (2nM) to isolated working hearts from non-fasting mice showed a robust stimulation of glucose oxidation compared to vehicle-treated hearts (3025±401 vs 1708±292 nmol. g dry wt -1 . min -1 , p<0.05, respectively) with a corresponding inhibition of palmitate oxidation (325±61 vs 731±160 nmol. g dry wt -1 . min -1 , p<0.05, respectively), even in the presence of insulin. Acute adropin addition to hearts also increased IRS-1 tyrosine-phosphorylation as well as Akt, and GSK3β phosphorylation (p<0.05), suggesting acute receptor- and/or post-translational modification-mediated mechanisms. These results suggest adropin as a putative candidate for the treatment of diabetic cardiomyopathy.


Sign in / Sign up

Export Citation Format

Share Document