Cold-induced developmental changes in fat cell size and number in brown adipose tissue of the rat

1981 ◽  
Vol 240 (4) ◽  
pp. E379-E383 ◽  
Author(s):  
C. Senault ◽  
G. Cherqui ◽  
M. Cadot ◽  
R. Portet

Seven-week-old Long-Evans rats were acclimated to a constant temperature of either 28 degrees C (control group) or 5 degrees C (cold-acclimated group). Cold acclimation induced a 70% increase in the interscapular brown adipose tissue (IBAT) relative mass, a 35% increase in DNA content, and a 44% decrease in triglyceride (TG) content, which resulted in a 51% decrease of the TG/DNA ratio. A procedure is described by which brown fat cells were isolated, with a yield of 21% from the IBAT of the control group and of 38% in the cold-acclimated group. In both groups, the brown fat cells accounted for 35-37% of the total cells in the tissue. Cold acclimation induced decreases in the mean fat cell diameter (about 20%), the mean fat cell TG content (50%), and the fat cell TG/DNA ratio (50%). The total number of IBAT fat cells was significantly increased in cold-acclimated rats. It is concluded that cold acclimation involves a hyperplasia of the IBAT, associated with a decrease of fat cell size without any alteration of the fat cell-to-nonfat cell ratio.

1978 ◽  
Vol 235 (3) ◽  
pp. R121-R129
Author(s):  
J. M. Horowitz ◽  
R. E. Plant

Brown adipose tissue serves as a model system for nonshivering thermogenesis (NST) since a) it has as a primary physiological function the conversion of chemical energy to heat; and b) preliminary data from other tissues involved in NST (e.g., muscle) indicate that parallel mechanisms may be involved. Now that biochemical pathways have been proposed for brown fat thermogenesis, cellular models consistent with a thermodynamic representation can be formulated. Stated concisely, the thermogenic mechanism in a brown fat cell can be considered as an energy converter involving a sequence of cellular events controlled by signals over the autonomic nervous system. A thermodynamic description for NST is developed in terms of a nonisothermal system under steady-state conditions using network thermodynamics. Pathways simulated include mitochondrial ATP synthesis, a Na+/K+ membrane pump, and ionic diffusion through the adipocyte membrane.


1964 ◽  
Vol 206 (1) ◽  
pp. 143-148 ◽  
Author(s):  
Robert E. Smith ◽  
Jane C. Roberts

Multilocular brown adipose tissue in the rat is shown to increase in both mass and respiratory rate, in vitro, during cold acclimation. By vascular convection the resulting heat is directly applied to the thoracocervical regions of the spinal cord, the heart, and other thoracic organs. The vasculature is so arranged as to exercise a fine order of thermogenic control over the brown fat and temperature of the peripheral venous returns to the thorax, facilitated in part by a "reverse" type of countercurrent heat exchange apparently not previously described.


1998 ◽  
Vol 275 (5) ◽  
pp. R1674-R1682 ◽  
Author(s):  
Andrea Dicker ◽  
Jin Zhao ◽  
Barbara Cannon ◽  
Jan Nedergaard

To examine the significance of brown adipose tissue for the thermogenic response to glucagon, we injected glucagon intraperitoneally into rats (that have glucagon-sensitive brown fat cells) and into hamsters (that have glucagon-insensitive brown fat cells). Although a thermogenic response to glucagon injection was apparently observed in rats, this response was not augmented by cold acclimation and was not dose dependent. Similar observations were made in hamsters. The thermogenic response could be fully blocked by prior injection of the β-adrenergic blocker propranolol. Thus no direct thermogenic response to injected glucagon could be demonstrated, and the thermogenic response observed was fully due to vehicle injection. However, glucagon injection was able to unmask mitochondrial [3H]GDP binding. As expected, isolated brown fat cells from rats and mice responded thermogenically to glucagon but brown fat cells from hamsters were unresponsive. The EC50 of the rat brown fat cells was high (5 nM); these cells also responded to secretin, with an EC50 of 22 nM. It was concluded that, in contrast to earlier observations, no thermogenic response to injected glucagon could be observed; this may be related to differences in glucagon preparations. Brown fat cells from certain species are, however, glucagon sensitive. It is uncertain whether glucagon is the endogenous agonist for these receptors, but the presence of the glucagon-responsive receptor indicates alternative means to norepinephrine for stimulation of brown adipose tissue thermogenesis and, probably, of recruitment.


2001 ◽  
Vol 79 (7) ◽  
pp. 585-593 ◽  
Author(s):  
Jin Zhao ◽  
Valeria Golozoubova ◽  
Barbara Cannon ◽  
Jan Nedergaard

Arotinolol, a clinically used α/β-adrenergic blocker, has been demonstrated to be an anti-obesity agent. The anti-obesity effect of arotinolol was suggested to be the result of direct activation of thermogenesis in brown-fat cells. We tested the ability of arotinolol to stimulate thermogenesis (oxygen consumption) in isolated brown-fat cells and in intact animals. Arotinolol stimulated thermogenesis in brown-fat cells isolated from mouse and hamster. A relatively low sensitivity to the β-adrenergic antagonist propranolol (pKB [Formula: see text] 6) indicated that arotinolol interacted with the β3-adrenergic receptor. On the β3-receptor, arotinolol was a very weak (EC50 [Formula: see text] 20 µM) and only partial ([Formula: see text]50 %) agonist, but arotinolol also demonstrated the properties of being a β3-receptor antagonist with a pKB of 5.7. In intact animals, only the antagonistic action of arotinolol could be observed. Because arotinolol is only a very weak and partial agonist on the β3-receptors, direct stimulation of thermogenesis in brown adipose tissue is unlikely to be sufficient to cause significant weight loss. It may be necessary to invoke additional pathways to explain the anti-obesity effects of chronic treatment with arotinolol.Key words: arotinolol, β3-adrenergic receptor, brown adipose tissue, thermogenesis, mouse, hamster, rat.


1976 ◽  
Vol 231 (5) ◽  
pp. 1568-1572 ◽  
Author(s):  
M DiGirolamo ◽  
JL Owens

Epididymal adipose tissue composition and adipocyte water content were studied in male rats during growth and development of spontaneous obesity. The data show that a highly significant positive correlation exists between fat-cell volume and intracellular water space (IWS) (r=.967, P less than .001). Intracellular water, expressed as picoliters per fat cell, varied from 1.5-2 in small fat cells (mean vol, 30-50 pl) to 9-10 in large cells (800-1,000 pl). When expressed as percent of fat-cell volume, IWS varied from 5-7% in the small fat cells to 1-1.3% in the large ones. Total adipose tissue water continued to increase with increasing adipose mass. Similarly, total adipocyte water increased with enlarging cell size and tissue mass. The contribution of total adipocyte water (as contrasted to that of nonadipocyte water) to total tissue water, however, was found to be limited (less than 23%) and to decline progressively with adipose mass expansion.


1988 ◽  
Vol 8 (5) ◽  
pp. 465-469 ◽  
Author(s):  
Gérard Mory ◽  
Myriam Gawer ◽  
Jean-Claude Kader

Chronic cold exposure of rats (9 days at 5°C) induces an alteration of the fatty acid composition of phospholipids in brown adipose tissue. The alteration is due to an increase of the unsaturation degree of these lipids. The phenomenon can be reproduced by 10−7 mole. h−1 administration of noradrenaline for 9 days in rats kept at 25°C. Thus, phospholipid alteration in brown fat of cold exposed rats is most probably a consequence of the increase of sympathetic tone which occurs in this tissue during exposure to cold.


1984 ◽  
Vol 4 (11) ◽  
pp. 933-940 ◽  
Author(s):  
Stewart W. Mercer ◽  
Paul Trayhurn

Genetically obese (ob/ob) mice develop insulin resistance in brown adipose tissue during the fifth week of life. Prior to this, at 26 days of age, oh/oh mice show a substantial increase in GDP binding to brownadipose-tissue mitochondria during acute cold exposure. When insulin resistance in brown fat develops, by 35 days of age, the increase in GDP binding in response to cold is markedly reduced. Studies with 2-deoxyglucose suggest that insulin resistance in brown adipose tissue could impair thermogenic responsiveness during acute cold exposure by limiting the ability of the tissue to take up glucose.


Sign in / Sign up

Export Citation Format

Share Document