Immunolocalization of GLUT-1 glucose transporter in rat skeletal muscle and in normal and hypoxic cardiac tissue

1993 ◽  
Vol 265 (3) ◽  
pp. E454-E464 ◽  
Author(s):  
C. L. Doria-Medina ◽  
D. D. Lund ◽  
A. Pasley ◽  
A. Sandra ◽  
W. I. Sivitz

We compared the expression and cell-type localization of GLUT-1 mRNA and protein between cardiac and skeletal muscle of normal rats. Also, since we recently showed that cardiac GLUT-1 is upregulated in rats exposed to hypobaric hypoxia, we examined the cellular localization of GLUT-1 in cardiac tissue of normal and hypoxic rats. Confocal light microscopy and double immunofluorescent labeling revealed intense localization of GLUT-1 around neurofilament immunoreactivity within gastrocnemius muscle consistent with the previously described localization of large amounts of GLUT-1 in perineurial sheaths of skeletal muscle. However, using the same methods, we were unable to visualize GLUT-1 adjacent to nerve fibers in numerous sections of right or left ventricles or atria. Compared with skeletal myoctes, however, GLUT-1 immunofluorescence among cardiomyocytes was much more intense, particularly along the plasma membrane and especially intercalated discs. GLUT-1 immunofluorescence was also seen within the walls of arterioles within the heart. The predominant localization of GLUT-1 expression to cardiomyocytes in heart tissue was confirmed by in situ mRNA hybridization to digoxigenin-conjugated GLUT-1 cDNA. Northern blot analysis demonstrated that GLUT-1 mRNA was increased severalfold in the cardiac tissues compared with skeletal muscle. Although we detected GLUT-1 protein by immunoblotting of detergent extracts of the heart, we could not detect GLUT-1 in similar extracts of skeletal muscle. The cell type distribution of GLUT-1 in hearts of hypoxic rats was not different by immunohistochemistry from normals. These data indicate that 1) the cell-type distribution of GLUT-1 in the heart differs markedly from that in skeletal muscle. GLUT-1 in cardiac tissue, unlike skeletal muscle, is predominantly expressed within myocytes. 2) Cardiac GLUT-1 is not located along nerve fibers. 3) GLUT-1 mRNA and protein levels in cardiac tissue are considerably greater than in skeletal muscle. 4) The hypoxia-induced increase in cardiac GLUT-1 that we previously reported must occur within cardiomyocytes.

1990 ◽  
Vol 259 (6) ◽  
pp. E778-E786 ◽  
Author(s):  
T. Ploug ◽  
B. M. Stallknecht ◽  
O. Pedersen ◽  
B. B. Kahn ◽  
T. Ohkuwa ◽  
...  

The effect of 10 wk endurance swim training on 3-O-methylglucose (3-MG) uptake (at 40 mM 3-MG) in skeletal muscle was studied in the perfused rat hindquarter. Training resulted in an increase of approximately 33% for maximum insulin-stimulated 3-MG transport in fast-twitch red fibers and an increase of approximately 33% for contraction-stimulated transport in slow-twitch red fibers compared with nonexercised sedentary muscle. A fully additive effect of insulin and contractions was observed both in trained and untrained muscle. Compared with transport in control rats subjected to an almost exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold by training in fast-twitch red muscle fibers. In parallel to this, Western blot demonstrated a approximately 47% increase in GLUT-1 protein and a approximately 31% increase in GLUT-4 protein. This indicates that the increases in maximum velocity for 3-MG transport in trained muscle is due to an increased number of glucose transporters.


1994 ◽  
Vol 107 (3) ◽  
pp. 487-496 ◽  
Author(s):  
I. Guillet-Deniau ◽  
A. Leturque ◽  
J. Girard

Skeletal muscle regeneration is mediated by the proliferation of myoblasts from stem cells located beneath the basal lamina of myofibres, the muscle satellite cells. They are functionally indistinguishable from embryonic myoblasts. The myogenic process includes the fusion of myoblasts into multinucleated myotubes, the biosynthesis of proteins specific for skeletal muscle and proteins that regulates glucose metabolism, the glucose transporters. We find that three isoforms of glucose transporter are expressed during foetal myoblast differentiation: GLUT1, GLUT3 and GLUT4; their relative expression being dependent upon the stage of differentiation of the cells. GLUT1 mRNA and protein were abundant only in myoblasts from 19-day-old rat foetuses or from adult muscles. GLUT3 mRNA and protein, detectable in both cell types, increased markedly during cell fusion, but decreased in contracting myotubes. GLUT4 mRNA and protein were not expressed in myoblasts. They appeared only in spontaneously contracting myotubes cultured on an extracellular matrix. Insulin or IGF-I had no effect on the expression of the three glucose transporter isoforms, even in the absence of glucose. The rate of glucose transport, assessed using 2-[3H]deoxyglucose, was 2-fold higher in myotubes than in myoblasts. Glucose deprivation increased the basal rate of glucose transport by 2-fold in myoblasts, and 4-fold in myotubes. The cellular localization of the glucose transporters was directly examined by immunofluorescence staining. GLUT1 was located on the plasma membrane of myoblasts and myotubes. GLUT3 was located intracellularly in myoblasts and appeared also on the plasma membrane in myotubes. Insulin or IGF-I were unable to target GLUT3 to the plasma membrane. GLUT4, the insulin-regulatable glucose transporter isoform, appeared only in contracting myotubes in small intracellular vesicles. It was translocated to the plasma membrane after a short exposure to insulin, as it is in skeletal muscle in vivo. These results show that there is a switch in glucose transporter isoform expression during myogenic differentiation, dependent upon the energy required by the different stages of the process. GLUT3 seemed to play a role during cell fusion, and could be a marker for the muscle's ability to regenerate.


2021 ◽  
Vol 12 ◽  
Author(s):  
Arkadiusz D. Liśkiewicz ◽  
Łukasz Marczak ◽  
Katarzyna Bogus ◽  
Daniela Liśkiewicz ◽  
Marta Przybyła ◽  
...  

Obesity cardiomyopathy increases the risk of heart failure and death. Obesity is curable, leading to the restoration of the heart phenotype, but it is not clear if there are any after-effects of obesity present after weight loss. We characterize the proteomic landscape of obesity cardiomyopathy with an evaluation of whether the cardiac phenotype is still shaped after weight loss. Cardiomyopathy was validated by cardiac hypertrophy, fibrosis, oversized myocytes, and mTOR upregulation in a rat model of cafeteria diet-induced developmental obesity. By global proteomic techniques (LC-MS/MS) a plethora of molecular changes was observed in the heart and circulation of obese animals, suggesting abnormal utilization of metabolic substrates. This was confirmed by increased levels of cardiac ACSL-1, a key enzyme for fatty acid degradation and decreased GLUT-1, a glucose transporter in obese rats. Calorie restriction and weight loss led to the normalization of the heart’s size, but fibrosis was still excessive. The proteomic compositions of cardiac tissue and plasma were different after weight loss as compared to control. In addition to morphological consequences, obesity cardiomyopathy involves many proteomic changes. Weight loss provides for a partial repair of the heart’s architecture, but the trace of fibrotic deposition and proteomic alterations may occur.


2000 ◽  
Vol 279 (3) ◽  
pp. E529-E538 ◽  
Author(s):  
M. Gaster ◽  
A. Handberg ◽  
H. Beck-Nielsen ◽  
H. D. Schrøder

The present study was initiated to investigate GLUT-1 through -5 expression in developing and mature human skeletal muscle. To bypass the problems inherent in techniques using tissue homogenates, we applied an immunocytochemical approach, employing the sensitive enhanced tyramide signal amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation, but its expression is markedly reduced around birth and is further reduced to undetectable levels within the first year of life; 2) GLUT-3 protein expression appears at 18 wk of gestation and disappears after birth; and 3) GLUT-4 protein is diffusely expressed in muscle cells throughout gestation, whereas after birth, the characteristic subcellular localization is as seen in adult muscle fibers. Our results show that GLUT-1, GLUT-3, and GLUT-4 seem to be of importance during muscle fiber growth and development. GLUT-5 protein was undetectable in fetal and adult skeletal muscle fibers. In adult muscle fibers, only GLUT-4 was expressed at significant levels. GLUT-1 immunoreactivity was below the detection limit in muscle fibers, indicating that this glucose transporter is of minor importance for muscle glucose supply. Thus we hypothesize that GLUT-4 also mediates basal glucose transport in muscle fibers, possibly through constant exposure to tonal contraction and basal insulin levels.


2006 ◽  
Vol 189 (2) ◽  
pp. 219-229 ◽  
Author(s):  
Susan Gray ◽  
Barbara S Stonestreet ◽  
Shanthie Thamotharan ◽  
Grazyna B Sadowska ◽  
Molly Daood ◽  
...  

We investigated the effects of maternal antenatal dexamethasone (Dex) treatment given as a single course (4 doses) or multiple courses (20 doses) on fetal skeletal muscle glucose transporter (GLUT) protein concentrations at 70% of gestation (106 to 107 days with term being 145 to 150 days) in the ovine fetus. Antenatal corticosteroid administration was associated with a decrease in endogenous fetal plasma cortisol concentrations (P < 0.05), fetal hyperglycemia (P < 0.02) and hyperinsulinemia (P < 0.05). These metabolic/hormonal changes were associated with a decrease in fetal body weight (P < 0.05) in the multiple course Dex group compared with the multiple course placebo group. These perturbations were associated with an increase in fetal skeletal muscle GLUT 1 concentrations that mediate basal glucose transport in the extensor digitorum lateralis and extensor digitorum longus muscles (P < 0.05) 18 h after the last dose of Dex was given in the single course group. However, in the multiple course Dex group, a small increase in GLUT 1 was observed only in the biceps femoris. In contrast, both single and multiple courses of antenatal Dex were associated with an increase in the extensor digitorum lateralis and biceps femoris muscle GLUT 4 (insulin-responsive) concentrations (P < 0.05). We conclude that antenatal corticosteroids perturb fetal glucose/insulin homeostasis, which is associated with increases in fetal skeletal muscle glucose transporters to compensate for and attenuate the associated catabolic fetal state. These changes consist of an increase in proteins that mediate basal glucose transport (GLUT 1) to meet immediate energy requirements of the fetal skeletal muscle with an increase in basal insulin sensitivity (GLUT 4) to compensate for the Dex-induced catabolic state after exposure to multiple courses of Dex.


2000 ◽  
Vol 124 (9) ◽  
pp. 1314-1319 ◽  
Author(s):  
Yutaka Kakita ◽  
Kiyohiko Oshiro ◽  
D. Sean O'Briain ◽  
Prem Puri

Abstract Objective.—Hypertrophic nerves have long been considered a histopathologic feature of the aganglionic segment in Hirschsprung disease, but they remain incompletely explained. The purpose of this study was to define the nature and diagnostic importance of hypertrophic nerves in Hirschsprung disease and to clarify their relation to nearby smaller nerve fibers. Methods.—We used an immunoperoxidase staining technique to compare the distribution of 2 nerve markers—erythrocyte-type glucose transporter (GLUT-1), a marker of perineurium, and nerve growth factor receptor, a marker of both nerve fibers and perineurium—in aganglionic tissue (12 resected specimens and 4 rectal biopsies) and control tissue (6 autopsy specimens and 17 rectal biopsies) of children. Results.—In control ganglionic tissue, the myenteric and submucosal areas contained only occasional GLUT-1–positive nerves (usually less than 50 μm in diameter), but extramural extrinsic (serosal) nerves were invariably positive for GLUT-1. In aganglionic tissue, GLUT-1–positive nerves in the myenteric and submucosal areas were frequent and included both large (50–150 μm) and small (&lt;50 μm) diameter nerves. Nerve growth factor receptor–positive fibers were frequent in all layers of all tissue studied. In aganglionic bowel, a distinct perineurium could be identified in the largest nerves, but nerve growth factor receptor had poor discrimination for small perineurium-sheathed nerves. Conclusion.—Most nerves, of both large and small diameter, in the myenteric and submucosal plexus of aganglionic bowel are GLUT-1 positive. Serosal extrinsic nerves stain identically, supporting the interpretation that the mural nerves are of extrinsic origin. Mural GLUT-1–positive nerves, when they are multiple and especially when they are greater than 50 μm in diameter (a figure which may be used as a threshold for hypertrophic nerves), are suggestive of Hirschsprung disease.


2009 ◽  
Vol 44 (4) ◽  
pp. 213-223 ◽  
Author(s):  
Michelle Colomiere ◽  
Michael Permezel ◽  
Martha Lappas

Severe insulin resistance is a defining attribute of gestational diabetes mellitus (GDM). It is postulated that alterations in the insulin-signalling pathway and subsequent glucose disposal are the underlying cause of insulin resistance in patients with GDM. The purpose of this study was to profile the insulin-signalling pathway and intermediates in insulin-sensitive tissues. Subcutaneous adipose tissue and skeletal muscle were collected from normal glucose-tolerant (NGT) and insulin-controlled GDM in both non-obese and obese cohorts (n=6–8 per subgroup). Expression studies of the insulin-signalling pathway were performed using western blotting and quantitative reverse transcription-PCR. This study demonstrated altered mRNA expression of insulin receptor substrate (IRS)-1, IRS-2, glucose transporter (GLUT)-1, GLUT-4 and glycogen synthase kinase (GSK)-3 isoforms genes in adipose tissue in GDM women in comparison to NGT pregnant controls. In skeletal muscle, insulin-controlled GDM was associated with decreased IRS-1, phosphatidylinositol-3-kinase (PI3-K) p85α, GLUT-1 and -4, GSK-3 isoforms and phosphoinositide-dependent kinase-1. Both adipose tissue and skeletal muscle from women with GDM displayed decreased IRS-1 and GLUT-4 and increased PI3-K p85α protein expression. Both skeletal muscle and adipose tissue from obese women demonstrated lower GLUT-1 and -4 mRNA expression and diminished GLUT-4 protein expression in skeletal muscle only. Collectively, our results suggest that diabetes and obesity during pregnancy cause defects in insulin-signalling transduction in adipose tissue and skeletal muscle and may be the underlying cause of GDM.


1999 ◽  
Vol 276 (3) ◽  
pp. R809-R817 ◽  
Author(s):  
Utpala G. Das ◽  
Robert E. Schroeder ◽  
William W. Hay ◽  
Sherin U. Devaskar

To determine the cellular adaptations to fetal hyperglycemia and hypoglycemia, we examined the time-dependent effects on basal (GLUT-1 and GLUT-3) and insulin-responsive (GLUT-4) glucose transporter proteins by quantitative Western blot analysis in fetal ovine insulin-insensitive (brain and liver) and insulin-sensitive (myocardium, skeletal muscle, and adipose) tissues. Maternal glucose infusions causing fetal hyperglycemia resulted in a transient 30% increase in brain GLUT-1 but not GLUT-3 levels and a decline in liver and adipose GLUT-1 and myocardial and skeletal muscle GLUT-1 and GLUT-4 levels compared with gestational age-matched controls. Maternal insulin infusions leading to fetal hypoglycemia caused a decline in brain GLUT-3, an increase in brain GLUT-1, and a subsequent decline in liver GLUT-1, with no significant change in insulin-sensitive myocardium, skeletal muscle, and adipose tissue GLUT-1 or GLUT-4 concentrations, compared with gestational age-matched sham controls. We conclude that fetal glucose transporters are subject to a time-dependent and tissue- and isoform-specific differential regulation in response to altered circulating glucose and/or insulin concentrations. These cellular adaptations in GLUT-1 (and GLUT-3) are geared toward protecting the conceptus from perturbations in substrate availability, and the adaptations in GLUT-4 are geared toward development of fetal insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document