Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle

1996 ◽  
Vol 270 (1) ◽  
pp. E197-E201 ◽  
Author(s):  
S. Kristiansen ◽  
M. Hargreaves ◽  
E. A. Richter

A major effect of muscle contractions is an increase in sarcolemmal glucose transport. We have used a recently developed technique to produce sarcolemmal giant vesicles from human muscle biopsy samples obtained before and after exercise. Six men exercised for 10 min at 50% maximal O2 uptake (Vo2max) and then to fatigue at 100% Vo2max (5.7 +/- 0.2 min). Vesicle glucose transport at 5 mM increased from 3.3 +/- 0.6 pmol.microgram-1.min-1 at rest to 6.6 +/- 1.0 pmol.microgram-1.min-1 at fatigue (mean +/- SE, n = 6, P < 0.05). This increase in glucose transport was associated with a 1.6-fold increase in vesicle GLUT-4 protein content. Glucose transport normalized to GLUT-4 protein content also increased with exercise, suggesting increased intrinsic activity of GLUT-4. Furthermore, exercise resulted in a 1.4-fold increase in sarcolemmal vesicle-associated membrane protein (VAMP-2) content, suggesting that muscle contractions may induce trafficking of GLUT-4-containing vesicles via a mechanism similar to neurotransmitter release. Our results demonstrate for the first time exercise-induced translocation of GLUT-4 and VAMP-2 to the plasma membrane of human muscle and increased sarcolemmal glucose transport.

1993 ◽  
Vol 264 (2) ◽  
pp. E270-E278 ◽  
Author(s):  
T. Ploug ◽  
J. Wojtaszewski ◽  
S. Kristiansen ◽  
P. Hespel ◽  
H. Galbo ◽  
...  

Collagenase treatment of skeletal muscle results in the formation of large spheres of membranes (3–30 microns diam). A procedure is described for purification and concentration of these giant membrane vesicles prepared from rat muscle. Morphological observations, marker enzyme analysis, and immunoblotting demonstrate that the vesicles are of plasma membrane origin and that sarcoplasmic reticulum, T-tubules, and mitochondrial inner membranes are absent from the preparation. Western blots demonstrate that the vesicles contain GLUT-4 glucose transporters, whereas GLUT-1 could not be detected. Vesicles prepared from control muscle display specific transport of D-glucose with a maximum velocity (Vmax) for glucose influx of approximately 2,500 pmol.mg plasma membrane protein-1.s-1 and an apparent Michaelis constant (Km) of 16 mM measured at zero-trans conditions at room temperature. Muscle contractions in vivo doubled the Vmax of vesicle glucose transport and membrane GLUT-4 content but did not change Km. In contrast, in vivo administration of insulin did not affect vesicle glucose transport or membrane GLUT-4 content. The combination of insulin and contractions caused similar changes as did contractions alone. It is concluded that the present vesicle population contains membrane components almost exclusively derived from the plasma membrane and contains very little if any GLUT-1 but substantial amounts of GLUT-4. Thus the preparation allows the study of transport kinetics of pure GLUT-4 transporters. The procedure for preparing vesicles probably results in activation of the glucose transport system similar to the activation by insulin but not by contractions.(ABSTRACT TRUNCATED AT 250 WORDS)


1992 ◽  
Vol 286 (1) ◽  
pp. 157-163 ◽  
Author(s):  
R Greco-Perotto ◽  
E Wertheimer ◽  
B Jeanrenaud ◽  
E Cerasi ◽  
S Sasson

The effect of culture conditions simulating hypo- and hyper-glycaemia on glucose transport and on the subcellular localization of the glucose transporter GLUT-1 was studied in L8 myocytes. Incubation of the cells with 20 mM-glucose for 25 h decreased the rate of 2-deoxy-D-[3H]glucose (dGlc) uptake to 0.106 +/- 0.016 nmol/min per 10(6) cells compared with 0.212 +/- 0.025 in cells maintained at 2 mM-glucose (final glucose concentrations at the end of the incubation period were 16-17 mM and 0.7-1.0 mM respectively). An additional 5 h incubation of these cells with medium containing the opposite glucose concentration (i.e. change from 17 mM to 1 mM and from 1 mM to 17 mM) increased the transport rate to 0.172 +/- 0.033 nmol/min per 10(6) cells in cultures initially conditioned at high glucose, and decreased the transport to 0.125 +/- 0.029 in those conditioned at low glucose. Plasma-membrane- and microsomal-membrane-enriched fractions were prepared from these cells for [3H]cytochalasin B (CB) binding and Western-blot analysis with antibodies against GLUT-1 and GLUT-4. A decrease in glucose concentration increased the number of D-glucose-displaceable CB-binding sites and GLUT-1 protein in the plasma-membrane fraction to the same extent as the increase in dGlc transport. Under downregulatory conditions, the lower dGlc-transport capacity could be accounted for by a decreased number of transporters in the plasma membrane of the cells. No apparent modification of the intrinsic activity of the glucose transporters was observed in up- or down-regulated cells. Under downregulatory conditions, the CB-binding data indicated a large increase in the number of transporters in the intracellular membranes of the myocytes. Western blots of the same membranes also indicated an increase in GLUT-1 content. However, the interaction of the intracellular GLUT-1 protein with the polyclonal antibodies was much weaker than that of the plasma-membrane-associated GLUT-1. The GLUT-4 concentration was too low to permit quantification in membrane fractions. Our findings suggest that autoregulation of glucose transport in L8 myocytes is accompanied by parallel changes in the number of GLUT-1 transporters in the plasma membrane, and that the rate of transporter degradation may be augmented in the upregulated myocytes. These glucose-induced changes are fully reversible.


1990 ◽  
Vol 259 (4) ◽  
pp. E593-E598 ◽  
Author(s):  
E. J. Henriksen ◽  
R. E. Bourey ◽  
K. J. Rodnick ◽  
L. Koranyi ◽  
M. A. Permutt ◽  
...  

The relationships among fiber type, glucose transporter (GLUT-4) protein content, and glucose transport activity stimulated maximally with insulin and/or contractile activity were studied by use of the rat epitrochlearis (15% type I-20% type II2a-65% type IIb), soleus (84-16-0%), extensor digitorum longus (EDL, 3-57-40%), and flexor digitorum brevis (FDB, 7-92-1%) muscles. Insulin-stimulated 2-deoxy-D-glucose (2-DG) uptake was greatest in the soleus, followed (in order) by the FDB, EDL, and epitrochlearis. On the other hand, contractile activity induced the greatest increase in 2-DG uptake in the FDB, followed by the EDL, soleus, and epitrochlearis. The effects of insulin and contractile activity on 2-DG uptake were additive in all the muscle preparations, with the relative rates being FDB greater than soleus greater than EDL greater than epitrochlearis. Quantitation of the GLUT-4 protein content with the antiserum R820 showed the following pattern: FDB greater than soleus greater than EDL greater than epitrochlearis. Linear regression analysis showed that whereas a relatively low and nonsignificant correlation existed between GLUT-4 protein content and 2-DG uptake stimulated by insulin alone, significant correlations existed between GLUT-4 protein content and 2-DG uptake stimulated either by contractions alone (r = 0.950) or by insulin and contractions in combination (r = 0.992). These results suggest that the differences in maximally stimulated glucose transport activity among the three fiber types may be related to differences in their content of GLUT-4 protein.


1997 ◽  
Vol 273 (3) ◽  
pp. C1082-C1087 ◽  
Author(s):  
A. D. Lee ◽  
P. A. Hansen ◽  
J. Schluter ◽  
E. A. Gulve ◽  
J. Gao ◽  
...  

beta-Adrenergic stimulation has been reported to inhibit insulin-stimulated glucose transport in adipocytes. This effect has been attributed to a decrease in the intrinsic activity of the GLUT-4 isoform of the glucose transporter that is mediated by phosphorylation of GLUT-4. Early studies showed no inhibition of insulin-stimulated glucose transport by epinephrine in skeletal muscle. The purpose of this study was to determine the effect of epinephrine on GLUT-4 phosphorylation, and reevaluate the effect of beta-adrenergic stimulation on insulin-activated glucose transport, in skeletal muscle. We found that 1 microM epinephrine, which raised adenosine 3',5'-cyclic monophosphate approximately ninefold, resulted in GLUT-4 phosphorylation in rat skeletal muscle but had no inhibitory effect on insulin-stimulated 3-O-methyl-D-glucose (3-MG) transport. In contrast to 3-MG transport, the uptakes of 2-deoxyglucose and glucose were markedly inhibited by epinephrine treatment. This inhibitory effect was presumably mediated by stimulation of glycogenolysis, which resulted in an increase in glucose 6-phosphate concentration to levels known to severely inhibit hexokinase. We conclude that 1) beta-adrenergic stimulation decreases glucose uptake by raising glucose 6-phosphate concentration, thus inhibiting hexokinase, but does not inhibit insulin-stimulated glucose transport and 2) phosphorylation of GLUT-4 has no effect on glucose transport in skeletal muscle.


2000 ◽  
Vol 88 (6) ◽  
pp. 2240-2245 ◽  
Author(s):  
Thomas H. Reynolds ◽  
Joseph T. Brozinick ◽  
Lisa M. Larkin ◽  
Samuel W. Cushman

The purpose of the present study was to examine the effect of detraining on the glucose transport system after short-term swim training (5 days), long-term swim training (5 wk), and treadmill run training (5 wk). Skeletal muscles were isolated from female Wistar rats at 24 or 48 h posttraining. SST produces a 48% increase in GLUT-4 mRNA, a 30% increase in GLUT-4 protein, and a 60% increase in insulin-stimulated glucose transport activity at 24 h posttraining but not at 48 h posttraining. Similar to SST, long-term swim training produces a 60% increase in GLUT-4 mRNA and a 30% increase in GLUT-4 protein content at 24 h posttraining but not at 48 h posttraining. Finally, treadmill run training produces a transient 35% increase in GLUT-4 protein content that is completely reversed at 48 h after the last bout of exercise. These results demonstrate that the increase in GLUT-4 mRNA and GLUT-4 protein occurs during the first week of exercise training and is rapidly lost after training cessation. We believe that the transient enhancement in GLUT-4 protein after exercise training is due to a short GLUT-4 half-life, a process that is primarily regulated by pretranslational mechanisms.


1994 ◽  
Vol 77 (4) ◽  
pp. 1597-1601 ◽  
Author(s):  
J. Gao ◽  
J. Ren ◽  
E. A. Gulve ◽  
J. O. Holloszy

The maximal effects of insulin and muscle contractions on glucose transport are additive. GLUT-4 is the major glucose transporter isoform expressed in skeletal muscle. Muscle contraction and insulin each induce translocation of GLUT-4 from intracellular sites into the plasma membrane. The purpose of this study was to test the hypothesis that the incremental effect of contractions and insulin on glucose transport is mediated by additivity of the maximal effects of these stimuli on GLUT-4 translocation into the sarcolemma. Anesthetized rats were given insulin by intravenous infusion to raise plasma insulin to 2,635 +/- 638 microU/ml. The gastrocnemius-plantaris-soleus group was stimulated to contract via the sciatic nerve by using a protocol that maximally activates glucose transport. After treatment with insulin, contractions, or insulin plus contractions or no treatment, the gastrocnemius-plantaris-soleus muscle group was dissected out and was subjected to subcellular fractionation to separate the plasma membrane and intracellular membrane fractions. Insulin induced a 70% increase and contractions induced a 113% increase in the GLUT-4 content of the plasma membrane fraction. The effects of insulin and contractions were additive, as evidenced by a 185% increase in the GLUT-4 content of the sarcolemmal fraction. This finding provides evidence that the incremental effect of maximally effective insulin and contractile stimuli on glucose transport is mediated by additivity of their effects on GLUT-4 translocation into the sarcolemma.


1992 ◽  
Vol 117 (4) ◽  
pp. 729-743 ◽  
Author(s):  
RC Piper ◽  
C Tai ◽  
JW Slot ◽  
CS Hahn ◽  
CM Rice ◽  
...  

GLUT-4 is the major facilitative glucose transporter isoform in tissues that exhibit insulin-stimulated glucose transport. Insulin regulates glucose transport by the rapid translocation of GLUT-4 from an intracellular compartment to the plasma membrane. A critical feature of this process is the efficient exclusion of GLUT-4 from the plasma membrane in the absence of insulin. To identify the amino acid domains of GLUT-4 which confer intracellular sequestration, we analyzed the subcellular distribution of chimeric glucose transporters comprised of GLUT-4 and a homologous isoform, GLUT-1, which is found predominantly at the cell surface. These chimeric transporters were transiently expressed in CHO cells using a double subgenomic recombinant Sindbis virus vector. We have found that wild-type GLUT-4 is targeted to an intracellular compartment in CHO cells which is morphologically similar to that observed in adipocytes and muscle cells. Sindbis virus-produced GLUT-1 was predominantly expressed at the cell surface. Substitution of the GLUT-4 amino-terminal region with that of GLUT-1 abolished the efficient intracellular sequestration of GLUT-4. Conversely, substitution of the NH2 terminus of GLUT-1 with that of GLUT-4 resulted in marked intracellular sequestration of GLUT-1. These data indicate that the NH2-terminus of GLUT-4 is both necessary and sufficient for intracellular sequestration.


2000 ◽  
Vol 164 (2) ◽  
pp. 187-195 ◽  
Author(s):  
R Romero ◽  
B Casanova ◽  
N Pulido ◽  
AI Suarez ◽  
E Rodriguez ◽  
...  

In 3T3-L1 adipocytes we have examined the effect of tri-iodothyronine (T(3)) on glucose transport, total protein content and subcellular distribution of GLUT1 and GLUT4 glucose transporters. Cells incubated in T(3)-depleted serum were used as controls. Cells treated with T(3) (50 nM) for three days had a 3.6-fold increase in glucose uptake (P<0.05), and also presented a higher insulin sensitivity, without changes in insulin binding. The two glucose carriers, GLUT1 and GLUT4, increased by 87% (P<0.05) and 90% (P<0. 05), respectively, in cells treated with T(3). Under non-insulin-stimulated conditions, plasma membrane fractions obtained from cells exposed to T(3) were enriched with both GLUT1 (3. 29+/-0.69 vs 1.20+/-0.29 arbitrary units (A.U.)/5 microg protein, P<0.05) and GLUT4 (3.50+/-1.16 vs 0.82+/-0.28 A.U./5 microg protein, P<0.03). The incubation of cells with insulin produced the translocation of both glucose transporters to plasma membranes, and again cells treated with T(3) presented a higher amount of GLUT1 and GLUT4 in the plasma membrane fractions (P<0.05 and P<0.03 respectively). These data indicate that T(3) has a direct stimulatory effect on glucose transport in 3T3-L1 adipocytes due to an increase in GLUT1 and GLUT4, and by favouring their partitioning to plasma membranes. The effect of T(3) on glucose uptake induced by insulin can also be explained by the high expression of both glucose transporters.


1990 ◽  
Vol 269 (3) ◽  
pp. 597-601 ◽  
Author(s):  
D M Calderhead ◽  
K Kitagawa ◽  
G E Lienhard ◽  
G W Gould

Insulin-stimulated glucose transport was examined in BC3H-1 myocytes. Insulin treatment lead to a 2.7 +/- 0.3-fold increase in the rate of deoxyglucose transport and, under the same conditions, a 2.1 +/- 0.1-fold increase in the amount of the brain-type glucose transporter (GLUT 1) at the cell surface. It has been shown that some insulin-responsive tissues express a second, immunologically distinct, transporter, namely GLUT 4. We report here that BC3H-1 myocytes and C2 and G8 myotubes express only GLUT 1; in contrast, rat soleus muscle and heart express 3-4 times higher levels of GLUT 4 than GLUT 1. Thus translocation of GLUT 1 can account for most, if not all, of the insulin stimulation of glucose transport in BC3H-1 myocytes. On the other, hand, neither BC3H-1 myocytes nor the other muscle-cell lines are adequate as models for the study of insulin regulation of glucose transport in muscle tissue.


Sign in / Sign up

Export Citation Format

Share Document