IL-10 modulates intestinal damage and epithelial cell apoptosis in T cell-mediated enteropathy

2004 ◽  
Vol 287 (3) ◽  
pp. G599-G604 ◽  
Author(s):  
Pengfei Zhou ◽  
Cathy Streutker ◽  
Rajka Borojevic ◽  
Yufa Wang ◽  
Ken Croitoru

In vivo T cell activation by anti-CD3 monoclonal antibody (mAb) results in intestinal damage characterized by loss of villi and epithelial cell apoptosis. The role of the increased interleukin (IL)-10 released during this process is not clear. We assessed the effects of IL-10 on T cell-induced mucosal damage in vivo using IL-10-deficient C57BL/6 [IL-10 knockout (KO)] mice. IL-10 KO and wild-type C57BL/6 mice were injected with anti-CD3 mAb and observed for diarrhea. Changes in serum cytokine levels were measured by ELISA. Histological changes and epithelial cell apoptosis were analyzed on hematoxylin- and eosin-stained tissue sections. Fas expression on intestinal epithelial cells was assessed by flow cytometry analysis of freshly isolated intestinal epithelial cells. Anti-CD3-treated IL-10 KO mice developed more severe diarrhea, a greater loss of intestinal villi, and an increase in the numbers of apoptotic cells in the crypt epithelium. This difference in IL-10 KO mice was associated with an increase in serum tumor necrosis factor-α and interferon-γ levels and with an increase in Fas expression on fresh, isolated, small intestinal epithelial cells. In addition, the enhanced intestinal tissue damage induced by anti-CD3 in IL-10 KO mice was significantly diminished by treatment with recombinant murine IL-10. Therefore, the lack of IL-10 allowed for an increased T cell-induced intestinal tissue damage, and this was associated with an increase in T cell cytokine release and an increase in epithelial cell Fas expression.

1995 ◽  
Vol 182 (4) ◽  
pp. 1079-1088 ◽  
Author(s):  
Y Li ◽  
X Y Yio ◽  
L Mayer

The activation of CD8+ suppressor T cells by normal intestinal epithelial cells in antigen-specific or allogeneic mixed cell culture systems has significant implications for the regulation of mucosal immune responses. In this study, we found that the capacity of epithelial cells to induce CD8+ suppressor T cell activation appeared to be linked to the binding of CD8 molecules on the T cell surface. This appears to be mediated by a non-class I molecule expressed on the epithelial cell surface, which binds to CD8 and results in the activation of the CD8-associated src-like tyrosine kinase, p56lck. Epithelial cell-stimulated p56lck activation is an early event (in contrast to monocytes) and is essential for T cell activation, since proliferation could be completely abrogated by pretreatment of T cells with genestein or herbamycin, both of which are protein tyrosine kinase inhibitors. Pretreatment of T cells with anti-CD8 or of intestinal epithelial cells with an anti-epithelial cell mAb B9 inhibited p56lck activation and further confirmed that CD8 on the T cell and a CD8 ligand on the epithelial cell were involved in this T cell activation event. The specificity of this reaction was confirmed in experiments in which murine transfectants 3G4 and 3G8, expressing CD4 or CD8, respectively, were used. Coculture of 3G8 with epithelial cells but not with monocytes activated p56lck in this cell line, whereas p56lck was preferentially activated in 3G4 cells when monocytes were used as the stimulator cells. Although stimulation through CD8- and CD8-associated p56lck was important for epithelial cell-induced T cell activation, T cell proliferation could not be induced by cross-linking CD8 alone with monoclonal antibody anti-CD8. These data suggest that a second signal, possibly through the T cell antigen receptor since activation of the T cell receptor-associated kinase fyn was also seen, is required for epithelial cell-driven T cell proliferation.


Science ◽  
2019 ◽  
Vol 363 (6431) ◽  
pp. eaat4042 ◽  
Author(s):  
Mark S. Ladinsky ◽  
Leandro P. Araujo ◽  
Xiao Zhang ◽  
John Veltri ◽  
Marta Galan-Diez ◽  
...  

Commensal bacteria influence host physiology, without invading host tissues. We show that proteins from segmented filamentous bacteria (SFB) are transferred into intestinal epithelial cells (IECs) through adhesion-directed endocytosis that is distinct from the clathrin-dependent endocytosis of invasive pathogens. This process transfers microbial cell wall–associated proteins, including an antigen that stimulates mucosal T helper 17 (TH17) cell differentiation, into the cytosol of IECs in a cell division control protein 42 homolog (CDC42)–dependent manner. Removal of CDC42 activity in vivo led to disruption of endocytosis induced by SFB and decreased epithelial antigen acquisition, with consequent loss of mucosal TH17 cells. Our findings demonstrate direct communication between a resident gut microbe and the host and show that under physiological conditions, IECs acquire antigens from commensal bacteria for generation of T cell responses to the resident microbiota.


2012 ◽  
Vol 303 (3) ◽  
pp. G356-G366 ◽  
Author(s):  
Steven H. Young ◽  
Nora Rozengurt ◽  
James Sinnett-Smith ◽  
Enrique Rozengurt

We have examined the role of protein kinase D1 (PKD1) signaling in intestinal epithelial cell migration. Wounding monolayer cultures of intestinal epithelial cell line IEC-18 or IEC-6 induced rapid PKD1 activation in the cells immediately adjacent to the wound edge, as judged by immunofluorescence microscopy with an antibody that detects the phosphorylated state of PKD1 at Ser916, an autophosphorylation site. An increase in PKD1 phosphorylation at Ser916 was evident as early as 45 s after wounding, reached a maximum after 3 min, and persisted for ≥15 min. PKD1 autophosphorylation at Ser916 was prevented by the PKD family inhibitors kb NB 142-70 and CRT0066101. A kb NB 142-70-sensitive increase in PKD autophosphorylation was also elicited by wounding IEC-6 cells. Using in vitro kinase assays after PKD1 immunoprecipitation, we corroborated that wounding IEC-18 cells induced rapid PKD1 catalytic activation. Further results indicate that PKD1 signaling is required to promote migration of intestinal epithelial cells into the denuded area of the wound. Specifically, treatment with kb NB 142-70 or small interfering RNAs targeting PKD1 markedly reduced wound-induced migration in IEC-18 cells. To test whether PKD1 promotes migration of intestinal epithelial cells in vivo, we used transgenic mice that express elevated PKD1 protein in the small intestinal epithelium. Enterocyte migration was markedly increased in the PKD1 transgenic mice. These results demonstrate that PKD1 activation is one of the early events initiated by wounding a monolayer of intestinal epithelial cells and indicate that PKD1 signaling promotes the migration of these cells in vitro and in vivo.


2018 ◽  
Vol 92 (10) ◽  
Author(s):  
Judy J. Brown ◽  
Sarah P. Short ◽  
Jennifer Stencel-Baerenwald ◽  
Kelly Urbanek ◽  
Andrea J. Pruijssers ◽  
...  

ABSTRACTSeveral viruses induce intestinal epithelial cell death during enteric infection. However, it is unclear whether proapoptotic capacity promotes or inhibits replication in this tissue. We infected mice with two reovirus strains that infect the intestine but differ in the capacity to alter immunological tolerance to new food antigen. Infection with reovirus strain T1L, which induces an inflammatory immune response to fed antigen, is prolonged in the intestine, whereas T3D-RV, which does not induce this response, is rapidly cleared from the intestine. Compared with T1L, T3D-RV infection triggered apoptosis of intestinal epithelial cells and subsequent sloughing of dead cells into the intestinal lumen. We conclude that the infection advantage of T1L derives from its capacity to subvert host restriction by epithelial cell apoptosis, providing a possible mechanism by which T1L enhances inflammatory signals during antigen feeding. Using a panel of T1L × T3D-RV reassortant viruses, we identified the viral M1 and M2 gene segments as determinants of reovirus-induced apoptosis in the intestine. Expression of the T1L M1 and M2 genes in a T3D-RV background was sufficient to limit epithelial cell apoptosis and enhance viral infection to levels displayed by T1L. These findings define additional reovirus gene segments required for enteric infection of mice and illuminate the antiviral effect of intestinal epithelial cell apoptosis in limiting enteric viral infection. Viral strain-specific differences in the capacity to infect the intestine may be useful in identifying viruses capable of ameliorating tolerance to fed antigen in autoimmune conditions like celiac disease.IMPORTANCEAcute viral infections are thought to be cleared by the host with few lasting consequences. However, there may be much broader and long-lasting effects of viruses on immune homeostasis. Infection with reovirus, a common, nonpathogenic virus, triggers inflammation against innocuous food antigens, implicating this virus in the development of celiac disease, an autoimmune intestinal disorder triggered by exposure to dietary gluten. Using two reovirus strains that differ in the capacity to abrogate oral tolerance, we found that strain-specific differences in the capacity to replicate in the intestine inversely correlate with the capacity to induce apoptotic death of intestinal epithelial cells, providing a host-mediated process to restrict intestinal infection. This work contributes new knowledge about virus-host interactions in the intestine and establishes a foundation for future studies to define mechanisms by which viruses break oral tolerance in celiac disease.


2021 ◽  
Author(s):  
Yiyun Deng ◽  
Zhe Zhang ◽  
Yuanyuan Hong ◽  
Lijuan Feng ◽  
Yong Su ◽  
...  

Abstract Objectives: The gastrointestinal side effects of mycophenolic acid affect its efficacy in kidney transplant patients, which may be due to its toxicity to the intestinal epithelial mechanical barrier, including intestinal epithelial cell apoptosis and destruction of tight junctions. The toxicity mechanism of mycophenolic acid is related to oxidative stress-mediated the activation of mitogen-activated protein kinases (MAP K). Schisandrin A (Sch A), one of the main active components of the Schisandra chinensis, can protects intestinal epithelial cells from deoxynivalenol-induced cytotoxicity and oxidative damage by antioxidant effects. The aim of this study was to investigate the protective effect and potential mechanism of Sch A on mycophenolic acid-induced damage in intestinal epithelial cell. Methods: Caco-2 cells monolayers were treated with mycophenolic acid (10µM) and/or Sch A (10, 20 and 40µM) at 37°C for 24h, and cell viability was measured by MTT; Western blot and immunofluorescence were used to detect the expression of relevant proteins. Intracellular ROS and apoptosis were measured by flow cytometry, and malondialdehyde (MDA) and superoxide dismutase (SOD) levels were measured by kits. Results: The results showed that Sch A significantly reversed the mycophenolic acid-induced cell viability reduction, restored the expression of tight junction protein ZO-1, occludin and reduced cell apoptosis. In addition, Sch A inhibited mycophenolic acid-mediated MAPK activation and reactive oxygen species (ROS) increase. Conclusions: Sch A protected intestinal epithelial cells from mycophenolic acid intestinal toxicity, at least in part, by reducing oxidative stress and inhibiting MAPK signaling pathway. Conclusions: Sch A protected intestinal epithelial cells from mycophenolic acid intestinal toxicity, at least in part, by reducing oxidative stress and inhibiting MAPK signaling pathway.


2011 ◽  
Vol 89 (2) ◽  
pp. 143-148 ◽  
Author(s):  
Andrew N. Flynn ◽  
Arthur Wang ◽  
Derek M. McKay ◽  
Andre G. Buret

The mechanisms by which enteropathogenic Escherichia coli (EPEC) causes intestinal epithelial cell apoptosis remain unclear. We tested the hypothesis that apoptosis-inducing factor (AIF) is involved in apoptosis induced by EPEC. Infection of intestinal epithelial cells in vitro with EPEC led to the mitochondrial and cytosolic accumulation of AIF. This effect was partially dependent on caspase activity. Knockdown of AIF with siRNA blocked cellular apoptosis in response to EPEC infection, as assessed by poly(ADP-ribose) polymerase cleavage and oligonucleosome formation. Taken together, these data suggest that caspase-dependent mobilization of AIF contributes to EPEC-induced epithelial cell apoptosis.


2009 ◽  
Vol 2 (5) ◽  
pp. 297-306 ◽  
Author(s):  
Naira Baregamian ◽  
Jun Song ◽  
C. Eric Bailey ◽  
John Papaconstantinou ◽  
B. Mark Evers ◽  
...  

Background: Oxidative stress and inflammation may contribute to the disruption of the protective gut barrier through various mechanisms; mitochondrial dysfunction resulting from inflammatory and oxidative injury may potentially be a significant source of apoptosis during necrotizing enterocolitis (NEC). Tumor necrosis factor (TNF)α is thought to generate reactive oxygen species (ROS) and activate the apoptosis signal-regulating kinase 1 (ASK1)-c-Jun N-terminal kinase (JNK)/p38 pathway. Hence, the focus of our study was to examine the effects of TNFα/ROs on mitochondrial function, ASK1-JNK/p38 cascade activation in intestinal epithelial cells during NEC.Results: We found (a) abundant tissue TNFα and ASK1 expression throughout all layers of the intestine in neonates with NEC, suggesting that TNFα/ASK1 may be a potential source (indicators) of intestinal injury in neonates with NEC; (b) TNFα-induced rapid and transient activation of JNK/p38 apoptotic signaling in all cell lines suggests that this may be an important molecular characteristic of NEC; (c) TNFα-induced rapid and transient ROs production in RIe-1 cells indicates that mitochondria are the predominant source of ROS, demonstrated by significantly attenuated response in mitochondrial DNA-depleted (RIE-1-ρ°) intestinal epithelial cells; (d) further studies with mitochondria-targeted antioxidant PBN supported our hypothesis that effective mitochondrial ROS trapping is protective against TNFα/ROs-induced intestinal epithelial cell injury; (e) TNFα induces significant mitochondrial dysfunction in intestinal epithelial cells, resulting in increased production of mtROS, drop in mitochondrial membrane potential (MMP) and decreased oxygen consumption; (f) although the significance of mitochondrial autophagy in NEC has not been unequivocally shown, our studies provide a strong preliminary indication that TNFα/ROs-induced mitochondrial autophagy may play a role in NeC, and this process is a late phenomenon.Methods: Paraffin-embedded intestinal sections from neonates with NEC and non-inflammatory condition of the gastrointestinal tract undergoing bowel resections were analyzed for TNFα and ASK1 expression. Rat (RIE-1) and mitochondrial DNA-depleted (RIE-1-ρ°) intestinal epithelial cells were used to determine the effects of TNFα on mitochondrial function.Conclusions: Our findings suggest that TNFα induces significant mitochondrial dysfunction and activation of mitochondrial apoptotic responses, leading to intestinal epithelial cell apoptosis during NeC. Therapies directed against mitochondria/ROS may provide important therapeutic options, as well as ameliorate intestinal epithelial cell apoptosis during NeC.


Author(s):  
Lianjie Hou ◽  
Xiong Tong ◽  
Shuyun Lin ◽  
Mingfang Yu ◽  
Wen-Chu Ye ◽  
...  

Intestinal epithelial cells are critical for nutrient absorption and defending against pathogen infection. Deoxynivalenol (Don), the most common mycotoxin, contaminates cereals and food throughout the world, causes serious damage to mammal intestinal mucosa, and appears as intestinal epithelial cell apoptosis and proliferation inhibition. Our previous study has found that milk-derived exosome ameliorates Don-induced intestinal damage, but the mechanism is still not fully understood. In this study, we demonstrated that Don downregulated the expression of miR-221/222 in intestinal epithelial cells, and exosome treatment reversed the inhibitory effect of Don on miR-221/222. Through immunofluorescence and flow cytometry analysis, we identified that miR-221/222 ameliorates Don-induced apoptosis and proliferation inhibition in intestinal epithelial cells. Through bioinformatics analyses and RNA immunoprecipitation analysis, we identified Phosphatase and tensin homolog (PTEN) is the target of miR-221/222. Through the PTEN interfering experiment, we found Don-induced apoptosis and proliferation inhibition relied on PTEN. Finally, through adenovirus to overexpress miR-221/222 in mice intestinal epithelial cells specifically, our results showed that miR-221/222 ameliorated Don-induced apoptosis and proliferation inhibition in intestinal epithelial cells by targeting PTEN. This study not only expands our understanding of how miR-221/222 and the host gene PTEN regulate intestinal epithelial cells defending against Don-induced damage, but also provides a new way to protect the development of the intestine.


1993 ◽  
Vol 177 (6) ◽  
pp. 1755-1762 ◽  
Author(s):  
T A Barrett ◽  
Y Tatsumi ◽  
J A Bluestone

The present study examined the mechanism(s) of tolerance induction for intestinal intraepithelial lymphocytes (iIELs) using an alloantigen (Ag)-specific gamma/delta T cell receptor (TCR gamma/delta) transgenic (Tg) model. In Tg Ag-bearing H-2b/d mice (Tgb/d), Tg iIELs were Thy-1-, CD44+, CD45R (B220)+, and CD5+, whereas in syngeneic Tgd/d mice, iIELs were Thy-1+, CD44-, and CD45R- with a subset of CD5+ cells. Previously, we had shown that tolerance for Tgb/d iIELs involved functional anergy and deletion (Barrett, T. A., M. L. Delvy, D. M. Kennedy, L. Lefrancois, L. A. Matis, A. L. Dent, S. M. Hedrick, and J. A. Bluestone. 1992. J. Exp. Med. 175:65). In this study we demonstrate that Tgb/d iIELs expressing dull levels of Thy-1 proliferated in the presence of exogenous rIL-2. A direct precursor-product relationship between the Thy-1+-responsive iIELs and the tolerant Thy-1dul/- iIELs was demonstrated by adoptive transfer into severe combined immunodeficient (SCID) mice. Tg Thy-1+ iIELs reconstituting Ag+ but not Ag- SCID mice downregulated Thy-1 after Ag exposure in vivo. Analysis of bone marrow (BM) chimeras demonstrated the persistence of Tg IELs in all Ag+ chimeras although a modest degree of clonal deletion was apparent. The greatest percentage of Tg IELs were detected when Ag was restricted to radioresistant cells (e.g., epithelial cells) compared with BM-derived antigen-presenting cells (APC). This was especially apparent in thymectomized chimeric mice. Consistent with the notion that Ag-bearing epithelial cells may be poor APC, isolated intestinal epithelial cells from Ag-bearing mice failed to stimulate Tg iIELs compared with splenic APC. These studies suggest that the major population of TCR gamma/delta iIELs were probably extrathymically derived and encountered self-Ag on intestinal epithelial cells. The induction of tolerance likely involved an activation event resulting in downregulation of Thy-1. These mechanisms of tolerance for TCR gamma/delta iIELs led to the persistence of a reservoir of self-reactive T cells with the potential for mediating autoimmune disease.


1993 ◽  
Vol 178 (3) ◽  
pp. 1115-1119 ◽  
Author(s):  
A Panja ◽  
R S Blumberg ◽  
S P Balk ◽  
L Mayer

We assessed the role of the nonclassical class I molecule, CD1d, in the interaction between intestinal epithelial cells and T cells. In a mixed lymphocyte reaction (MLR) system where the stimulator cells were irradiated normal intestinal cells, the anti-CD1d monoclonal antibody (mAb) 3C11 inhibited T cell proliferation. In contrast, no inhibition was seen when mAb 3C11 was added to conventional MLR cultures (non T cell stimulators). Furthermore, no inhibition was seen when either airway epithelial cells were used as stimulator cells or lamina propria lymphocytes were used as responder cells. These latter two conditions along with a conventional MLR favor CD4+ T cell proliferation. However, we have previously shown that normal intestinal epithelial cells stimulate CD8+ T cells under similar culture conditions. Thus, CD1d expressed on intestinal epithelial cells may be an important ligand in CD8+ T cell-epithelial cell interactions.


Sign in / Sign up

Export Citation Format

Share Document