scholarly journals Distinct roles of histamine H1- and H2-receptor signaling pathways in inflammation-associated colonic tumorigenesis

2019 ◽  
Vol 316 (1) ◽  
pp. G205-G216 ◽  
Author(s):  
Zhongcheng Shi ◽  
Robert S. Fultz ◽  
Melinda A. Engevik ◽  
Chunxu Gao ◽  
Anne Hall ◽  
...  

Inflammatory bowel disease (IBD) is a well-known risk factor for the development of colorectal cancer. Prior studies have demonstrated that microbial histamine can ameliorate intestinal inflammation in mice. We tested the hypothesis whether microbe-derived luminal histamine suppresses inflammation-associated colon cancer in Apcmin/+ mice. Mice were colonized with the human-derived Lactobacillus reuteri. Chronic inflammation was induced by repeated cycles of low-dose dextran sulfate sodium (DSS). Mice that were given histamine-producing L. reuteri via oral gavage developed fewer colonic tumors, despite the presence of a complex mouse gut microbiome. We further demonstrated that administration of a histamine H1-receptor (H1R) antagonist suppressed tumorigenesis, while administration of histamine H2-receptor (H2R) antagonist significantly increased both tumor number and size. The bimodal functions of histamine include protumorigenic effects through H1R and antitumorigenic effects via H2R, and these results were supported by gene expression profiling studies on tumor specimens of patients with colorectal cancer. Greater ratios of gene expression of H2R ( HRH2) vs. H1R ( HRH1) were correlated with improved overall survival outcomes in patients with colorectal cancer. Additionally, activation of H2R suppressed phosphorylation of mitogen-activated protein kinases (MAPKs) and inhibited chemokine gene expression induced by H1R activation in colorectal cancer cells. Moreover, the combination of a H1R antagonist and a H2R agonist yielded potent suppression of lipopolysaccharide-induced MAPK signaling in macrophages. Given the impact on intestinal epithelial and immune cells, simultaneous modulation of H1R and H2R signaling pathways may be a promising therapeutic target for the prevention and treatment of inflammation-associated colorectal cancer. NEW & NOTEWORTHY Histamine-producing Lactobacillus reuteri can suppress development of inflammation-associated colon cancer in an established mouse model. The net effects of histamine may depend on the relative activity of H1R and H2R signaling pathways in the intestinal mucosa. Our findings suggest that treatment with H1R or H2R antagonists could yield opposite effects. However, by harnessing the ability to block H1R signaling while stimulating H2R signaling, novel strategies for suppression of intestinal inflammation and colorectal neoplasia could be developed.

mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Chunxu Gao ◽  
Angela Major ◽  
David Rendon ◽  
Monica Lugo ◽  
Vanessa Jackson ◽  
...  

ABSTRACT Probiotics and commensal intestinal microbes suppress mammalian cytokine production and intestinal inflammation in various experimental model systems. Limited information exists regarding potential mechanisms of probiotic-mediated immunomodulation in vivo. In this report, we demonstrate that specific probiotic strains of Lactobacillus reuteri suppress intestinal inflammation in a trinitrobenzene sulfonic acid (TNBS)-induced mouse colitis model. Only strains that possess the hdc gene cluster, including the histidine decarboxylase and histidine-histamine antiporter genes, can suppress colitis and mucosal cytokine (interleukin-6 [IL-6] and IL-1β in the colon) gene expression. Suppression of acute colitis in mice was documented by diminished weight loss, colonic injury, serum amyloid A (SAA) protein concentrations, and reduced uptake of [18F]fluorodeoxyglucose ([18F]FDG) in the colon by positron emission tomography (PET). The ability of probiotic L. reuteri to suppress colitis depends on the presence of a bacterial histidine decarboxylase gene(s) in the intestinal microbiome, consumption of a histidine-containing diet, and signaling via the histamine H2 receptor (H2R). Collectively, luminal conversion of l-histidine to histamine by hdc + L. reuteri activates H2R, and H2R signaling results in suppression of acute inflammation within the mouse colon. IMPORTANCE Probiotics are microorganisms that when administered in adequate amounts confer beneficial effects on the host. Supplementation with probiotic strains was shown to suppress intestinal inflammation in patients with inflammatory bowel disease and in rodent colitis models. However, the mechanisms of probiosis are not clear. Our current studies suggest that supplementation with hdc + L. reuteri, which can convert l-histidine to histamine in the gut, resulted in suppression of colonic inflammation. These findings link luminal conversion of dietary components (amino acid metabolism) by gut microbes and probiotic-mediated suppression of colonic inflammation. The effective combination of diet, gut bacteria, and host receptor-mediated signaling may result in opportunities for therapeutic microbiology and provide clues for discovery and development of next-generation probiotics.


2021 ◽  
Vol 22 (19) ◽  
pp. 10260
Author(s):  
Constantin Stefani ◽  
Daniela Miricescu ◽  
Iulia-Ioana Stanescu-Spinu ◽  
Remus Iulian Nica ◽  
Maria Greabu ◽  
...  

Colorectal cancer (CRC) is a predominant malignancy worldwide, being the fourth most common cause of mortality and morbidity. The CRC incidence in adolescents, young adults, and adult populations is increasing every year. In the pathogenesis of CRC, various factors are involved including diet, sedentary life, smoking, excessive alcohol consumption, obesity, gut microbiota, diabetes, and genetic mutations. The CRC tumor microenvironment (TME) involves the complex cooperation between tumoral cells with stroma, immune, and endothelial cells. Cytokines and several growth factors (GFs) will sustain CRC cell proliferation, survival, motility, and invasion. Epidermal growth factor receptor (EGFR), Insulin-like growth factor -1 receptor (IGF-1R), and Vascular Endothelial Growth Factor -A (VEGF-A) are overexpressed in various human cancers including CRC. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) and all the three major subfamilies of the mitogen-activated protein kinase (MAPK) signaling pathways may be activated by GFs and will further play key roles in CRC development. The main aim of this review is to present the CRC incidence, risk factors, pathogenesis, and the impact of GFs during its development. Moreover, the article describes the relationship between EGF, IGF, VEGF, GFs inhibitors, PI3K/AKT/mTOR-MAPK signaling pathways, and CRC.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Camille Ternet ◽  
Christina Kiel

AbstractThe intestinal epithelium acts as a physical barrier that separates the intestinal microbiota from the host and is critical for preserving intestinal homeostasis. The barrier is formed by tightly linked intestinal epithelial cells (IECs) (i.e. enterocytes, goblet cells, neuroendocrine cells, tuft cells, Paneth cells, and M cells), which constantly self-renew and shed. IECs also communicate with microbiota, coordinate innate and adaptive effector cell functions. In this review, we summarize the signaling pathways contributing to intestinal cell fates and homeostasis functions. We focus especially on intestinal stem cell proliferation, cell junction formation, remodelling, hypoxia, the impact of intestinal microbiota, the immune system, inflammation, and metabolism. Recognizing the critical role of KRAS mutants in colorectal cancer, we highlight the connections of KRAS signaling pathways in coordinating these functions. Furthermore, we review the impact of KRAS colorectal cancer mutants on pathway rewiring associated with disruption and dysfunction of the normal intestinal homeostasis. Given that KRAS is still considered undruggable and the development of treatments that directly target KRAS are unlikely, we discuss the suitability of targeting pathways downstream of KRAS as well as alterations of cell extrinsic/microenvironmental factors as possible targets for modulating signaling pathways in colorectal cancer.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jiao Wu ◽  
Sai-Ching Jim Yeung ◽  
Sicheng Liu ◽  
Aiham Qdaisat ◽  
Dewei Jiang ◽  
...  

AbstractWeight loss and cachexia are common problems in colorectal cancer patients; thus, parenteral and enteral nutrition support play important roles in cancer care. However, the impact of nonessential amino acid components of nutritional intake on cancer progression has not been fully studied. In this study, we discovered that gastrointestinal cancer patients who received cysteine as part of the parenteral nutrition had shorter overall survival (P < 0.001) than those who did not. Cystine indeed robustly promotes colon cancer cell growth in vitro and in immunodeficient mice, predominately by inhibiting SESN2 transcription via the GCN2-ATF4 axis, resulting in mTORC1 activation. mTORC1 inhibitors Rapamycin and Everolimus block cystine-induced cancer cell proliferation. In addition, cystine confers resistance to oxaliplatin and irinotecan chemotherapy by quenching chemotherapy-induced reactive oxygen species via synthesizing glutathione. We demonstrated that dietary deprivation of cystine suppressed colon cancer xenograft growth without weight loss in mice and boosted the antitumor effect of oxaliplatin. These findings indicate that cyst(e)ine, as part of supplemental nutrition, plays an important role in colorectal cancer and manipulation of cyst(e)ine content in nutritional formulations may optimize colorectal cancer patient survival.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Anna Pačínková ◽  
Vlad Popovici

The dysfunction of the DNA mismatch repair system results in microsatellite instability (MSI). MSI plays a central role in the development of multiple human cancers. In colon cancer, despite being associated with resistance to 5-fluorouracil treatment, MSI is a favourable prognostic marker. In gastric and endometrial cancers, its prognostic value is not so well established. Nevertheless, recognising the MSI tumours may be important for predicting the therapeutic effect of immune checkpoint inhibitors. Several gene expression signatures were trained on microarray data sets to understand the regulatory mechanisms underlying microsatellite instability in colorectal cancer. A wealth of expression data already exists in the form of microarray data sets. However, the RNA-seq has become a routine for transcriptome analysis. A new MSI gene expression signature presented here is the first to be valid across two different platforms, microarrays and RNA-seq. In the case of colon cancer, its estimated performance was (i) AUC = 0.94, 95% CI = (0.90 – 0.97) on RNA-seq and (ii) AUC = 0.95, 95% CI = (0.92 – 0.97) on microarray. The 25-gene expression signature was also validated in two independent microarray colon cancer data sets. Despite being derived from colorectal cancer, the signature maintained good performance on RNA-seq and microarray gastric cancer data sets (AUC = 0.90, 95% CI = (0.85 – 0.94) and AUC = 0.83, 95% CI = (0.69 – 0.97), respectively). Furthermore, this classifier retained high concordance even when classifying RNA-seq endometrial cancers (AUC = 0.71, 95% CI = (0.62 – 0.81). These results indicate that the new signature was able to remove the platform-specific differences while preserving the underlying biological differences between MSI/MSS phenotypes in colon cancer samples.


2007 ◽  
Vol 293 (2) ◽  
pp. L480-L490 ◽  
Author(s):  
Jinming Zhao ◽  
Richart Harper ◽  
Aaron Barchowsky ◽  
Y. P. Peter Di

Activation and regulation of transcription factors (TFs) are the major mechanisms regulating changes in gene expression upon environmental exposure. Tobacco smoke (TS) is a complex mixture of chemicals, each of which could act through different signal cascades, leading to the regulation of distinct TFs and alterations in subsequent gene expression. We proposed that TS exposure affects inflammatory gene expression at the transcriptional level by modulating the DNA binding activities of TFs. To investigate transcriptional regulation upon TS exposure, a protein/DNA array was applied to screen TFs that are affected by TS exposure. This array-based screening allowed us to simultaneously detect 244 different TFs. Our results indicated that multiple TFs were rapidly activated upon TS exposure. DNA-binding activity of differentially expressed TFs was confirmed by EMSA. Our results showed that at least 20 TFs displayed more than twofold expressional changes after smoke treatment. Ten smoke-induced TFs, including NF-κB, VDR, ISRE, and RSRFC4, were involved in MAPK signaling pathways. The NF-κB family, which is involved in inflammation-induced gene activation, was selected for further study to characterize TS exposure-induced transcriptional activation. Western blot analysis and immunofluorescence microscopy indicated that TS exposure induced phosphorylation of IκB and translocation of NF-κB p65/p50 heterodimers into the nucleus. This activity was abrogated by the MAPK inhibitors PD98059 and U0126. Our results confirmed that activation of MAPK signaling pathways by TS exposure increased transcriptional activity of NF-κB. These data provide a potential mechanism for TS-induced inflammatory gene expression.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. 6524-6524
Author(s):  
B. Curley ◽  
M. A. O'Grady ◽  
S. Litwin ◽  
K. Stitzenberg ◽  
H. Armitage ◽  
...  

6524 Background: The retrieval of ≥12 lymph nodes in a colorectal cancer surgical specimen is an established quality metric. The impact of targeted education to improve nodal yield at community hospitals has not been studied. We initiated an intensive educational program through the Fox Chase Cancer Center Partner (FCCCP) hospitals to improve nodal retrieval in colon cancer specimens. Methods: At 12 FCCCP community hospitals from 2004–05, educational initiatives were conducted by FCCC staff and included group presentations at hospital tumor boards, cancer and quality committees, and regional CME. Individual presentations to pathologists and surgeons were held. Tumor registry data were retrospectively collected from FCCCP from 2003 (pre-intervention) to 2006 (post-intervention) for patients undergoing curative colon cancer surgery. Data abstracted were age, sex, race, stage, surgical procedure, and total number of nodes examined. The primary end point was % surgical specimens with ≥12 lymph nodes. Obtaining at least 250 records per year would allow ≥90% power to detect a change from a baseline level of ∼40% to ≥50% after intervention. Results: Data from 4,208 patients from 12 FCCCP hospitals were collected. Overall characteristics: male/female (48%/52%), race (W 83%, AA 7%, other 10%), age (<50:6%, 50–70: 34%, >70:60%), node ± (39%/61%). The % of colon cancer operations with ≥12 nodes significantly increased over the four years of the study (Table, p<.00001). This difference persisted when pooling years before and after the intervention (2003–04 vs. 2005–06, p <0.0001). There was no difference in nodal yield between two pre-intervention years (2003 vs. 2004, p=0.1). No differences in other characteristics such as age, sex, race, or % lymph node positive were noted between years. Conclusions: A multi-intervention targeted educational initiative in a large community cancer network is feasible and associated with increased colon cancer nodal retrieval. [Table: see text] No significant financial relationships to disclose.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 3609-3609
Author(s):  
Lucy Gately ◽  
Christine Semira ◽  
Azim Jalali ◽  
Ian Faragher ◽  
Sumitra Ananda ◽  
...  

3609 Background: Multiple meta-analyses have demonstrated that routine surveillance following curative intent colorectal cancer surgery improves overall survival. This benefit is largely driven by early detection and curative intent resection of oligometastatic disease. Intuitively, any surveillance benefit should be proportional to recurrence risk, leading some to question the value of surveillance for stage I patients where recurrence rates are low. However, the survival benefit of surveillance has not previously been reported by stage. Methods: We explored data from a multi-site cohort of colorectal cancer patients (pts) diagnosed from 1 January 2001 to 31 December 2016. Pts were followed according to standard protocols with a standardized comprehensive outcome data captured prospectively. Pts with a rectal primary or metastatic disease at presentation were excluded from the analysis. We examined the correlation of stage at diagnosis with tumor recurrence and subsequent outcomes. Results: Of 3608 colon cancer pts, 690 (19%) had stage 1, 1580 (44%) had stage 2, and 1338 (37%) had stage 3 disease. Median follow-up was 7.8 years. Stage at diagnosis impacted recurrence rate (4% stage I vs 12% stage II vs 28% stage III, p < .0001) but not median time to recurrence. Recurrence patterns varied with stage (e.g. distant nodal disease 5% vs 7% vs 16%, p = .003; liver metastases 90% vs 53% vs 42%, p = 0.001). In pts with recurrence, resection of oligometastatic disease varied significantly by stage (58% vs 42% vs 30%, p < .0001) as did post-resection 5 year survival (91% vs 66% vs 43%, p < 0.001). In pts with recurrence treated with palliative intent, stage at diagnosis also impacted post-recurrence 5 year survival (11% vs 7% vs 5%, p < 0.03). Conclusions: Colon cancer stage at diagnosis substantially impacts the proportion of pts able to undergo curative intent surgery for surveillance detected recurrent disease, potentially driven by stage specific metastatic patterns. Stage at diagnosis also has a significant impact on post-resection survival outcomes potentially driven by stage specific biology. Our data indicate a far greater survival impact of surveillance for stage I colon cancer than would be anticipated based on recurrence rate alone.


2017 ◽  
Vol 95 (1) ◽  
pp. 99-109 ◽  
Author(s):  
Rulan Jiang ◽  
Bo Lönnerdal

Lactoferrin (Lf) is an iron-binding glycoprotein that is present at high concentrations in milk. Bovine lactoferricin (LfcinB) is a peptide fragment generated by pepsin proteolysis of bovine lactoferrin (bLf). LfcinB consists of amino acid residues 17–41 proximal to the N-terminus of bLf and a disulfide bond between residues 19 and 36, forming a loop. Both bLf and LfcinB have been demonstrated to have antitumor activities. Colorectal cancer is the second most common cause of cancer death in developed countries. We hypothesized that bLf and LfcinB exert antitumor activities on colon cancer cells (HT-29) by triggering various signaling pathways. bLf and LfcinB significantly induced apoptosis in HT-29 cells but not in normal human intestinal epithelial cells, as revealed by the ApoTox-Glo Triplex Assay. The LIVE/DEAD cell viability assay showed that both bLf and LfcinB reduced the viability of HT-29 cells. Transcriptome analysis indicated that bLf, cyclic LfcinB, and linear LfcinB exerted antitumor activities by differentially activating diverse signaling pathways, including p53, apoptosis, and angiopoietin signaling. Immunoblotting results confirmed that both bLf and LfcinBs increased expression of caspase-8, p53, and p21, critical proteins in tumor suppression. These results provide valuable information regarding bLf and LfcinB for potential clinical applications in colon cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document