scholarly journals A weakly acidic solution containing deoxycholic acid induces esophageal epithelial apoptosis and impairs integrity in an in vivo perfusion rabbit model

2016 ◽  
Vol 310 (7) ◽  
pp. G487-G496 ◽  
Author(s):  
Nicolas A. Pardon ◽  
Maria Vicario ◽  
Hanne Vanheel ◽  
Tim Vanuytsel ◽  
Laurens J. Ceulemans ◽  
...  

Impaired esophageal mucosal integrity may be an important contributor in the pathophysiology of gastroesophageal reflux disease (GERD). Nevertheless, the effect of potentially harmful agents on epithelial integrity is mainly evaluated in vitro for a short period of time and the possible induction of epithelial apoptosis has been neglected. Our objective was to assess the effect of an acidic and weakly acidic solution containing deoxycholic acid (DCA) on the esophageal epithelium in an in vivo rabbit model of esophageal perfusion and to evaluate the role of the epithelial apoptosis. The esophagus of 55 anesthetized rabbits was perfused for 30 min with different solutions at pH 7.2, pH 5.0, pH 1.0, and pH 5.0 containing 200 and 500 μM DCA. Thereafter, animals were euthanized immediately or at 24 or 48 h after the perfusion. Transepithelial electrical resistance, epithelial dilated intercellular spaces, and apoptosis were assessed in Ussing chambers, by transmission electron microscopy, and by TUNEL staining, respectively. No macroscopic or major microscopic alterations were observed after the esophageal perfusions. The acidic and weakly acidic solution containing DCA induced similar long-lasting functional impairment of the epithelial integrity but different ultrastructural morphological changes. Only the solution containing DCA induced epithelial apoptosis in vivo and in vitro in rabbit and human tissue. In contrast to acid, a weakly acidic solution containing DCA induces epithelial apoptosis and a long-lasting impaired mucosal integrity. The presence of apoptotic cells in the esophageal epithelium may be used as a marker of impaired integrity and/or bile reflux exposure.

2012 ◽  
Vol 142 (5) ◽  
pp. S-203
Author(s):  
Nicolas A. Pardon ◽  
Maria Vicario ◽  
Hanne Vanheel ◽  
Tim Vanuytsel ◽  
Kathleen Blondeau ◽  
...  

2018 ◽  
Vol 4 (4) ◽  
pp. 523-531
Author(s):  
Hina Mumtaz ◽  
Muhammad Asim Farooq ◽  
Zainab Batool ◽  
Anam Ahsan ◽  
Ashikujaman Syed

The main purpose of development pharmaceutical dosage form is to find out the in vivo and in vitro behavior of dosage form. This challenge is overcome by implementation of in-vivo and in-vitro correlation. Application of this technique is economical and time saving in dosage form development. It shortens the period of development dosage form as well as improves product quality. IVIVC reduce the experimental study on human because IVIVC involves the in vivo relevant media utilization in vitro specifications. The key goal of IVIVC is to serve as alternate for in vivo bioavailability studies and serve as justification for bio waivers. IVIVC follows the specifications and relevant quality control parameters that lead to improvement in pharmaceutical dosage form development in short period of time. Recently in-vivo in-vitro correlation (IVIVC) has found application to predict the pharmacokinetic behaviour of pharmaceutical preparations. It has emerged as a reliable tool to find the mode of absorption of several dosage forms. It is used to correlate the in-vitro dissolution with in vivo pharmacokinetic profile. IVIVC made use to predict the bioavailability of the drug of particular dosage form. IVIVC is satisfactory for the therapeutic release profile specifications of the formulation. IVIVC model has capability to predict plasma drug concentration from in vitro dissolution media.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hayato Mizuta ◽  
Koutaroh Okada ◽  
Mitsugu Araki ◽  
Jun Adachi ◽  
Ai Takemoto ◽  
...  

AbstractALK gene rearrangement was observed in 3%–5% of non-small cell lung cancer patients, and multiple ALK-tyrosine kinase inhibitors (TKIs) have been sequentially used. Multiple ALK-TKI resistance mutations have been identified from the patients, and several compound mutations, such as I1171N + F1174I or I1171N + L1198H are resistant to all the approved ALK-TKIs. In this study, we found that gilteritinib has an inhibitory effect on ALK-TKI–resistant single mutants and I1171N compound mutants in vitro and in vivo. Surprisingly, EML4-ALK I1171N + F1174I compound mutant-expressing tumors were not completely shrunk but regrew within a short period of time after alectinib or lorlatinib treatment. However, the relapsed tumor was markedly shrunk after switching to the gilteritinib in vivo model. In addition, gilteritinib was effective against NTRK-rearranged cancers including entrectinib-resistant NTRK1 G667C-mutant and ROS1 fusion-positive cancer.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Guoying Zhang ◽  
Cheng Xue ◽  
Yiming Zeng

Abstract Background We have previously found that β-elemene could inhibit the viability of airway granulation fibroblasts and prevent airway hyperplastic stenosis. This study aimed to elucidate the underlying mechanism and protective efficacy of β-elemene in vitro and in vivo. Methods Microarray and bioinformatic analysis were used to identify altered pathways related to cell viability in a β-elemene-treated primary cell model and to construct a β-elemene-altered ceRNA network modulating the target pathway. Loss of function and gain of function approaches were performed to examine the role of the ceRNA axis in β-elemene's regulation of the target pathway and cell viability. Additionally, in a β-elemene-treated rabbit model of airway stenosis, endoscopic and histological examinations were used to evaluate its therapeutic efficacy and further verify its mechanism of action. Results The hyperactive ILK/Akt pathway and dysregulated LncRNA-MIR143HG, which acted as a miR-1275 ceRNA to modulate ILK expression, were suppressed in β-elemene-treated airway granulation fibroblasts; β-elemene suppressed the ILK/Akt pathway via the MIR143HG/miR-1275/ILK axis. Additionally, the cell cycle and apoptotic phenotypes of granulation fibroblasts were altered, consistent with ILK/Akt pathway activity. In vivo application of β-elemene attenuated airway granulation hyperplasia and alleviated scar stricture, and histological detections suggested that β-elemene's effects on the MIR143HG/miR-1275/ILK axis and ILK/Akt pathway were in line with in vitro findings. Conclusions MIR143HG and ILK may act as ceRNA to sponge miR-1275. The MIR143HG/miR-1275/ILK axis mediates β-elemene-induced cell cycle arrest and apoptosis of airway granulation fibroblasts by modulating the ILK/Akt pathway, thereby inhibiting airway granulation proliferation and ultimately alleviating airway stenosis.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 444
Author(s):  
Alaa Mahran ◽  
Sayed Ismail ◽  
Ayat A. Allam

Treatment of uveitis (i.e., inflammation of the uvea) is challenging due to lack of convenient ophthalmic dosage forms. This work is aimed to determine the efficiency of triamcinolone acetonide (TA)-loaded microemulsion as an ophthalmic delivery system for the treatment of uveitis. Water titration method was used to construct different pseudo-ternary phase diagrams. Twelve microemulsion formulations were prepared using oleic acid, Cremophor EL, and propylene glycol. Among all tested formulations, Formulation F3, composed of oil: surfactant-co-surfactant (1:1): water (15:35:50% w/w, respectively), was found to be stable and showed acceptable pH, viscosity, conductivity, droplet size (211 ± 1.4 nm), and zeta potential (−25 ± 1.7 mV) and almost complete in vitro drug release within 24 h. The in vivo performance of the optimized formulation was evaluated in experimentally uveitis-induced rabbit model and compared with a commercial TA suspension (i.e., Kenacort®-A) either topically or by subconjunctival injection. Ocular inflammation was evaluated by clinical examination, white blood cell count, protein content measurement, and histopathological examination. The developed TA-loaded microemulsion showed superior therapeutic efficiency in the treatment of uveitis with high patient compliance compared to commercial suspension. Hence, it could be considered as a potential ocular treatment option in controlling of uveitis.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 158
Author(s):  
Akshaya Tatke ◽  
Narendar Dudhipala ◽  
Karthik Janga ◽  
Bhavik Soneta ◽  
Bharathi Avula ◽  
...  

Delivering an effective drug load to the posterior section of the ocular tissues, while using a non-invasive technique, has always been a challenge. In this regard, the goal of the present study was to develop sustained release triamcinolone acetonide (TA) loaded polymeric matrix films for ocular delivery. The TA-films were prepared in two different polymer matrices, with drug loadings of 10% and 20% w/w, and they were evaluated for ocular distribution in vivo in a conscious rabbit model. A 4% w/v TA suspension (TA-C) was used as a control for in vitro and in vivo studies. The TA-films, prepared with melt-cast technology, used polyethylene oxide (PEO) and Soluplus® as the polymer matrix. The films were evaluated with respect to assay, content uniformity, excipient interaction, and permeability across isolated rabbit sclera. The distribution of TA in the ocular tissues, post topical administration, was determined in New Zealand male albino rabbits as a function of dose, and was compared against TA-C. The assay of the 10% and 20% w/w film was in the range from 70–79% and 92–94% for the Soluplus® and PEO films, respectively, and content uniformity was in the range of 95–103% for both the films. The assay of the TA from Soluplus® films was less compared with the PEO films and showed an interaction with TA, as revealed by Differential Scanning Calorimetry (DSC). Hence, Soluplus® films were not selected for further studies. No interaction was observed between the drug and PEO polymer matrix. The enhancement of trans-scleral flux and permeability of TA was about 1.16 and 1.33-folds, respectively, from the 10% w/w PEO and 3.5 and 2.12-folds, respectively, from the 20% w/w PEO films, as compared with TA-C formulations. The in vivo studies demonstrate that significantly higher TA levels were observed in the anterior and posterior segments of the eye at the end of 6h with the PEO films. Therefore, the PEO based polymeric films were able to deliver TA into the back of the eye efficiently and for prolonged periods.


1992 ◽  
Vol 61 (2-3) ◽  
pp. 291-304 ◽  
Author(s):  
N.M. Delzenne ◽  
P.Buc Calderon ◽  
H.S. Taper ◽  
M.B. Roberfroid

Author(s):  
Xiangli Zhang ◽  
Qin Shen ◽  
Yi Wang ◽  
Leilei Zhou ◽  
Qi Weng ◽  
...  

Background: E2 (Camptothecin - 20 (S) - O- glycine - deoxycholic acid), and G2 (Camptothecin - 20 (S) - O - acetate - deoxycholic acid) are two novel bile acid-derived camptothecin analogues by introducing deoxycholic acid in 20-position of CPT(camptothecin) with greater anticancer activity and lower systematic toxicity in vivo. Objective: We aimed to investigate the metabolism of E2 and G2 by Rat Liver Microsomes (RLM). Methods: Phase Ⅰ and Phase Ⅱ metabolism of E2 and G2 in rat liver microsomes were performed respectively, and the mixed incubation of phase I and phase Ⅱ metabolism of E2 and G2 was also processed. Metabolites were identified by liquid chromatographic/mass spectrometry. Results: The results showed that phase I metabolism was the major biotransformation route for both E2 and G2. The isoenzyme involved in their metabolism had some difference. The intrinsic clearance of G2 was 174.7mL/min. mg protein, more than three times of that of E2 (51.3 mL/min . mg protein), indicating a greater metabolism stability of E2. 10 metabolites of E2 and 14 metabolites of G2 were detected, including phase I metabolites (mainly via hydroxylations and hydrolysis) and their further glucuronidation products. Conclusion: These findings suggested that E2 and G2 have similar biotransformation pathways except some difference in the hydrolysis ability of the ester bond and amino bond from the parent compounds, which may result in the diversity of their metabolism stability and responsible CYPs(Cytochrome P450 proteins).


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi222-vi222
Author(s):  
Breanna Mann ◽  
Noah Bell ◽  
Denise Dunn ◽  
Scott Floyd ◽  
Shawn Hingtgen ◽  
...  

Abstract Brain cancers remain one of the greatest medical challenges. The lack of experimentally tractable models that recapitulate brain structure/function represents a major impediment. Platforms that enable functional testing in high-fidelity models are urgently needed to accelerate the identification and translation of therapies to improve outcomes for patients suffering from brain cancer. In vitro assays are often too simple and artificial while in vivo studies can be time-intensive and complicated. Our live, organotypic brain slice platform can be used to seed and grow brain cancer cell lines, allowing us to bridge the existing gap in models. These tumors can rapidly establish within the brain slice microenvironment, and morphologic features of the tumor can be seen within a short period of time. The growth, migration, and treatment dynamics of tumors seen on the slices recapitulate what is observed in vivo yet is missed by in vitro models. Additionally, the brain slice platform allows for the dual seeding of different cell lines to simulate characteristics of heterogeneous tumors. Furthermore, live brain slices with embedded tumor can be generated from tumor-bearing mice. This method allows us to quantify tumor burden more effectively and allows for treatment and retreatment of the slices to understand treatment response and resistance that may occur in vivo. This brain slice platform lays the groundwork for a new clinically relevant preclinical model which provides physiologically relevant answers in a short amount of time leading to an acceleration of therapeutic translation.


Author(s):  
Yanhong Zhao ◽  
Xige Zhao ◽  
Rui Zhang ◽  
Ying Huang ◽  
Yunjie Li ◽  
...  

Repair of articular cartilage defects is a challenging aspect of clinical treatment. Kartogenin (KGN), a small molecular compound, can induce the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) into chondrocytes. Here, we constructed a scaffold based on chondrocyte extracellular matrix (CECM) and poly(lactic-co-glycolic acid) (PLGA) microspheres (MP), which can slowly release KGN, thus enhancing its efficiency. Cell adhesion, live/dead staining, and CCK-8 results indicated that the PLGA(KGN)/CECM scaffold exhibited good biocompatibility. Histological staining and quantitative analysis demonstrated the ability of the PLGA(KGN)/CECM composite scaffold to promote the differentiation of BMSCs. Macroscopic observations, histological tests, and specific marker analysis showed that the regenerated tissues possessed characteristics similar to those of normal hyaline cartilage in a rabbit model. Use of the PLGA(KGN)/CECM scaffold may mimic the regenerative microenvironment, thereby promoting chondrogenic differentiation of BMSCs in vitro and in vivo. Therefore, this innovative composite scaffold may represent a promising approach for acellular cartilage tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document